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Abstract

We study the additive distortion of social choice functions in
the implicit utilitarian model, and argue that it is a more ap-
propriate metric than multiplicative distortion when an alter-
native that confers significant social welfare may exist (i.e.,
when the stakes are high). We define a randomized analog of
positional scoring rules, and present a rule which is asymp-
totically optimal within this class as the number of alterna-
tives increases. We then show that the instance-optimal social
choice function can be efficiently computed. Next, we take a
beyond-worst-case view, bounding the additive distortion of
prominent voting rules as a function of the best welfare attain-
able in an instance. Lastly, we evaluate the additive distortion
of a range of rules on real-world election data.

1 Introduction
Distortion is a widely-used metric that captures the worst-
case loss in efficiency of a social choice function (SCF) (An-
shelevich et al. 2021b). It is defined in the implicit utilitarian
model where voters have cardinal utilities for alternatives
but only report ordinal information, e.g., (partial) rankings,
to the social choice function, which then outputs a distribu-
tion over winning alternatives.

Distortion evaluates SCFs according to their worst-case
performance over all implicit utilities and corresponding in-
duced rankings, where performance is measured in terms of
(utilitarian) social welfare, i.e. the sum of all agents’ util-
ities. Specifically, the distortion of a rule is the maximum
ratio between the social welfare of the optimal alternative
and the expected social welfare given by the rule.

While utilitarian social welfare is a defensible basis on
which to evaluate social choice functions (Boutilier et al.
2015), distortion is not always the best tool for the job. In
particular, we might prefer a social choice function which
delivers poor multiplicative guarantees on instances where
no alternative confers significant social welfare, so long as
it performs well on instances where the potential gains are
large. For example, a 1/

√
m-approximation is a much more

tolerable loss when the maximum attainable social welfare
is O(log n) (as for a symmetric profile with n alternatives)
than when it is fully Ω(n).
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Indeed, the canonical instance which demonstrates a
Ω(
√
m) lower bound on distortion for randomized social

choice functions (Boutilier et al. 2015) allots at most a
1/
√
m proportion of the total utility to any alternative. In

practice—for example, in political contests—we often ex-
pect that there are alternatives which confer much larger so-
cial welfare than the average alternative.

To address these concerns we instead study the additive
distortion of randomized social choice functions, which may
be viewed as their worst-case expected regret (Caragiannis
et al. 2017). The additive distortion of a social choice func-
tion is the difference between the maximum social welfare
attainable and the expected social welfare that f delivers, in
the worst case over all implicit utilities. Different profiles in
the implicit utilitarian model can have vastly different max-
imum attainable social welfare, and we posit that, in eval-
uating social choice functions, additive distortion appropri-
ately prioritizes the instances in which the most utility can
be gained or lost. More concretely, consider a fixed profile
of ordinal votes. Multiplicative distortion hedges against bad
performance in the case of consistent utilities which assign
low total welfare for all candidates, which harms its perfor-
mance for consistent utilities that yield high-welfare candi-
dates. Additive distortion, on the other hand, prioritizes good
performance for this latter case.

In its introduction to the social choice setting, distortion
was compared to the distortion of metric embeddings (Pro-
caccia and Rosenschein 2006); this additive distortion is
similarly analogous (Liestman and Shermer 1993).

Although we advocate for additive distortion primarily
on the above grounds, another advantage is that it remains
a meaningful worst-case metric under weaker assumptions
about voters’ utilities. Past work on distortion in the (non-
metric) implicit utilitarian model has made the assumption
that all voters’ utilities are unit-sum (Procaccia and Rosen-
schein 2006; Caragiannis and Procaccia 2011; Boutilier
et al. 2015; Caragiannis et al. 2017; Benadè et al. 2021). This
is not a coincidence: with potentially apathetic voters whose
utilities are instead unit-capped, one can show that choosing
an alternative uniformly at random (incurring distortion m)
is optimal, and that the distortion of any deterministic rule is
infinite. However, the assumption that all participating vot-
ers’ total utility is equal is unreasonable in many settings,
and we instead uniformly cap the sum of voters’ utilities at



one (Aziz 2019). As we will show in Section 3, additive dis-
tortion provides a discerning metric by which to evaluate
SCFs in this broader context.

In this work we aim to answer the following questions:

Question 1: What is the best additive distortion at-
tainable for randomized social choice functions?
Question 2: How well do prominent social choice
functions perform with respect to additive distortion,
both in theory and in practice?

Our Results In the pursuit of randomized SCFs with low
additive distortion, we focus on a natural class of rules
known as point voting schemes (Barberà 1978), which are
the natural randomized analog of positional scoring rules. A
point voting scheme (PVS) first computes aggregate scores
based on a scoring vector (as scoring rules do), and then
chooses each alternative with probability proportional its
score. Like scoring rules, PVSs are both intuitive and easy
to compute. The two most prominent PVSs—Randomized
Dictatorship, and the harmonic rule of (Boutilier et al.
2015)—are nearly distortion-optimal in the normalized util-
ity and metric settings, respectively. When considered to-
gether with our results, we argue that PVSs merit wider at-
tention in the study of distortion.

In Section 3 we address Question 1. We establish
that Randomized Dictatorship (RD) has additive distortion
1
2 (1− 1/m) · n, and lower bound the best additive distor-
tion obtainable by any randomized social choice function.
We then present the Best-or-Bust (BoB) rule, which has dis-
tortion at most 11

27 ·n and asymptotically minimizes additive
distortion within the class of all randomized scoring rules. In
particular, this establishes an asymptotic separation between
deterministic and randomized voting rules with respect to
additive distortion, even as m becomes large. We also show
that the obstructions to minimizing additive distortion are
information-theoretic rather than computational by present-
ing an instance-optimal randomized social choice function
which can be computed efficiently.

In Section 4 we present an alternative metric for prior-
itizing the worst-case performance on instances with high
attainable social welfare, which we call promise distortion.
This is a beyond-worst-case guarantee that some alternative
confers social welfare at least α · n, for some α ∈ [0, 1].
We analyze the extent to which multiplicative promise dis-
tortion circumvents the Ω(

√
m) lower bound of (Boutilier

et al. 2015), relate it to additive distortion, and provide an
analysis of some social choice functions with respect to both
additive and multiplicative promise distortion.

We answer Question 2 in Sections 4 and 5. In Section 4
we analyze a range of prominent social choice functions
through the lens of additive distortion, providing upper and
lower bounds on their worst-case performance.

In Section 5, we evaluate the performance of our asymp-
totically optimal positional scoring rule against other scoring
rules commonly used in practice, optimal randomized and
deterministic algorithms for additive distortion, and an op-
timal randomized algorithm for (multiplicative) distortion.
We observe that the optimal algorithm for multiplicative dis-
tortion is no longer optimal for additive distortion, and that

the Plurality PVS performs the best on profiles encountered
in practice, which suggests that, in practice, votes are far
from worst-case instances.

1.1 Related Work
Distortion was first introduced by Procaccia and Rosen-
schein (2006) in the context of deterministic single-winner
social choice functions and normalized utilities. In a later
paper, Caragiannis and Procaccia (2011) proved that the
Plurality rule has a distortion of O(m2), and further work
demonstrated that this is the best possible distortion of any
deterministic voting rule (Caragiannis et al. 2017).

Beyond deterministic social choice functions, Boutilier
et al. (2015) initiated the study of average-case analysis
of randomized social choice functions under distributional
assumptions about utilities. They also showed an Ω(

√
m)

lower bound on the distortion of any randomized rule in the
worst case, and introduced a pair of voting rules with distor-
tionO(

√
m·log∗m) andO(

√
m · logm), the latter of which

makes use of the harmonic scoring vector. Caragiannis et al.
(2017) introduced regret to the implicit utilitarian model of
voting; the regret that they study is equivalent to additive dis-
tortion in their unit-sum utility setting. They study choosing
a k-subset of alternatives when social welfare is linear in the
winners. For k = 1 and deterministic rules, their straightfor-
ward claims apply to additive distortion also; for random-
ized rules their results imply a 1

4 ·n lower bound on additive
distortion and a rule with at most 1

2

(
1− 1

m2

)
· n additive

distortion. We show better upper and lower bounds for ran-
domized rules.

Multiplicative distortion has also received attention in the
metric setting. There voters and alternatives sit in a metric
space, distances are costs, and one generally aims to mini-
mize the social cost of a chosen alternative, given only vot-
ers’ rankings. Anshelevich et al. (2018) first studied metric
distortion, demonstrating that the Copeland rule has a dis-
tortion of 5, in stark contrast to the bounds of the unit-sum
utility setting. They also conjectured that the deterministic
lower bound of 3 is tight, and many papers made progress
toward this conjecture (Skowron and Elkind 2017; Goel,
Krishnaswamy, and Munagala 2017; Munagala and Wang
2019; Kempe 2020a) before its ultimate proof by Gkatzelis,
Halpern, and Shah (2020). Here again randomized rules do
better: Anshelevich and Postl (2017) showed that Random-
ized Dictatorship has distortion at most 3 − 2/n and gave a
lower bound of 2 on the distortion of all randomized rules in
the metric setting. Kempe (2020b) and Gkatzelis, Halpern,
and Shah (2020) each present rules attaining 3 − 2/m, and
Anshelevich and Postl (2017) and Fain et al. (2019) study
variants of the randomized dictatorship mechanism. Lastly,
Seddighin, Latifian, and Ghodsi (2021) studies distortion
when some voters may abstain. Unfortunately additive dis-
tortion is uninteresting here because there is no (dis)utility
normalization—additive distortion is made arbitrarily large
by rescaling an instance. For a comprehensive survey of
works concerning multiplicative distortion, see (Anshele-
vich et al. 2021b,a).

Finally, we study a class of SCFs which are the random-
ized analog of positional scoring rules. Young (1975) char-



acterized deterministic scoring functions (with rounds of
tiebreaking) as the SCFs which are anonymous, neutral, and
consistent, and Xia and Conitzer (2008) provide a striking
deterministic generalization of scoring rules. Walsh and Xia
(2012) and Bentert and Skowron (2020) present schemes
which may be viewed as randomized generalizations of scor-
ing rules, where deterministic rules are applied to profiles
formed by subsampling voters and alternatives, respectively.

2 Setting and Definitions
Consider voters N = [n] and alternatives A, with |A| = m.
Each voter i ∈ N has a ranking σi over A which is a strict
total order; we say that a �i b for alternatives a, b ∈ A if
σi(a) < σi(b). The collection of rankings σ = (σi)i∈N is a
profile; let Σ := SnA denote the collection of all profiles.

Voters have implicit utilities ui ∈ RA+ which are consis-
tent with their rankings; that is, if a �i b then ui(a) ≥ ui(b).
We say that u.σ for a collection of utilities u if ui is consis-
tent with σi for all voters i. Weakening the standard unit-sum
implicit utility assumption, we assume:
Assumption 2.1. The total utility of each voter is unit-
capped at

∑
a∈A ui(a) ≤ 1 for all voters i.

Given a profile σ, a deterministic social choice function
f : Σ → A chooses an alternative to be the winner for
this profile. Similarly, a randomized social choice function
f : Σ → ∆A returns a probability distribution over win-
ners, where ∆A is the probability simplex over A; at elec-
tion time, a winner is drawn randomly from the probability
distribution f(σ) ∈ ∆A. Here SCFs are randomized unless
otherwise stated.

Perhaps the most prominent class of deterministic SCFs
are scoring functions, or (positional) scoring rules (SRs).
Each SR fs is given by a scoring vector s ∈ Rm. It first
assigns to each alternative a ∈ A the aggregate score Sa :=∑
i sσ−1

i (a), which is the score associated with each voter i’s
ranking of a, summed over all voters. The alternative with
the maximum score is then chosen. Scoring functions can
handle ties either by returning the set of alternatives with
maximal scores, or by using additional scoring vectors to
iteratively break ties.

As outlined above, the multiplicative distortion of a ran-
domized SCF f is the worst-case ratio

dist(f) := max
σ

max
u.σ

maxa∗∈A sw(a∗)

Ea∼f(σ)[sw(a)]
,

over all profiles σ and utility profiles u consistent with σ,
where sw(a) denotes the social welfare of a: sw(a) :=∑
i∈N ui(a). Additive distortion is the difference, rather

than the ratio:

dist+(f) := max
σ

max
u.σ

(
max
a∗∈A

sw(a∗)− Ea∼f(σ)[sw(a)]

)
.

For beyond-worst-case distortion, we will use the follow-
ing notion of a utility promise:
Definition 2.2. The utility profile u satisfies an α-promise
on its maximum social welfare if there exists some alterna-
tive a ∈ A for which sw(a) ≥ α · n.

2.1 Randomized Scoring Rules
Towards the goal of minimizing additive distortion, we find
it compelling to study the following class of SCFs:
Definition 2.3. A point voting scheme (PVS) is an SCF
given by a scoring vector s ∈ Rm+ −0. The aggregate scores
Sa are calculated in the same way as for scoring rules, and
then each alternative is chosen to be the winner with prob-
ability proportional to its total score. Let PVS denote the
class of all such rules.
Example 2.4. Consider the PVS given by s = (2, 1, 0) and
a profile σ with n = 3 and m = 3 where two voters report
a1 � a2 � a3 and one voter reports a3 � a2 � a1. The
total score of a1 is 2 + 2 + 0 = 4, the total score of a2

is 1 + 1 + 1 = 3, and the total score of a3 is 0 + 0 +
2 = 2. Therefore, the probability that a1 wins the election is
4/9, the probability that a2 wins the election is 1/3, and the
probability that a3 wins the election is 2/9.

Just as the prominent rules Plurality, Borda Count, and
Veto belong to the class of deterministic SRs,PVS also con-
tains noteworthy rules. One is the harmonic scoring vector-
based rule of Boutilier et al. (2015) mentioned above, which
is nearly optimal for multiplicative distortion. It is given
by s = (1 +Hm/m, 1/2 +Hm/m, . . . , 1/m+Hm/m),
where Hm is the mth harmonic number. Another is
Randomized Dictatorship, given by s = (1, 0, . . . , 0).
Remarkably, RD incurs O(3 − 2/n) multiplicative dis-
tortion in the metric setting, which is also nearly optimal
(Anshelevich and Postl 2017).

In principle, there are many ways in which an aggregate
score vector S can be converted to a probability distribution
over A. Let us call P : Rm+ − 0 → ∆A a probabilizer,
and focus on neutral probabilizers, i.e., the P which com-
mute with all permutations of A. Then a generalized PVS
consists of a pair (s, P ) of scoring vector and neutral proba-
bilizer; given σ it first computes S according to s, then sam-
ples from the distribution P (S). Let PVS∗ denote the class
of all such SCFs. This is indeed a generalization, since any
PVS given by s is a generalized PVS with the probabilizer
P (S)a := Sa/‖S‖1 for all a, where ‖S‖1 :=

∑
a∈A Sa.

Note that PVS∗ also contains all (otherwise deterministic)
scoring rules that break ties uniformly at random. For a given
scoring vector s the scoring rule is given by (s, P ), where P
returns the uniform distribution over arg maxa Sa. In fact,
PVS∗ also generalizes the “favorite only” rules which have
received recent attention for metric distortion; in addition to
RD these include the “proportional to squares” mechanism
studied in (Anshelevich and Postl 2017) and the Random
Oligarchy mechanism of (Fain et al. 2019).

3 Additive Distortion
We begin by proving a structural lemma which establishes
that, for worst-case additive distortion, voter utilities may be
assumed to be normalized without loss of generality. That is,
even when voters have uniformly capped (instead of normal-
ized) utilities, the worst case instances for additive distortion
are when all voters have utilities summing to 1. The proof
(and all other omitted proofs in this paper) can be found in
the appendix.



Lemma 3.1. For each SCF f , the utility profile that
witnesses the maximum of dist+(f) is normalized, i.e.,∑
a ui(a) = 1 for all voters i ∈ [n].
With this lemma in hand, we next show that, in the worst

case, additive distortion can inevitably be quite large.
Claim 3.2. For all SCFs f and m ≥ 3, dist+(f) ≥ 5

18 · n.

Proof. We assume that n = 3k for some positive integer
k, take m = 3, and let the alternatives be a1, a2, and a3.
Consider the profile in which n/3 voters believe a1 � a2 �
a3, n/3 voters believe a2 � a3 � a1, and n/3 voters believe
a3 � a1 � a2. Let pi be the probability that f chooses ai,
and without loss of generality assume that p1 ≥ p2 ≥ p3.

Now, let the first n/3 voters have utilities u(a1) =
u(a2) = u(a3) = 1/3; the second n/3 voters have utilities
u(a2) = u(a3) = 1/2 and u(a1) = 0; and the last n/3 voters
have utilities u(a3) = 1 and u(a1) = u(a2) = 0.

Therefore, we have
dist+(f, σ) ≥ max

a∗∈A
sw(a∗)− Ea∼f(σ)[sw(a)]

=
11

18
· n−

(
1

9
· p1 +

5

18
· p2 +

11

18
· p3

)
n

≥ 5

18
· n. (because p1 ≥ p2 ≥ p3)

Note that this construction straightforwardly extends to
any other m > 3.

For deterministic rules, these symmetric instances offer
even stronger lower bounds. The following claim was shown
by Caragiannis et al. (2017) in a more general setting of
choosing k winners out of m alternatives; for completeness,
we reproduce the example for the single-winner setting be-
low.
Claim 3.3 (Theorem 1 in (Caragiannis et al. 2017)). For all
deterministic SCFs f and m ≥ 2, dist+(f) ≥ 1

2 · n.

Proof. Let m = 2 and consider the profile σ with voters
equally divided between a1 � a2 and a2 � a1. Suppose
that f chooses a2. If the first group has utilities u(a1) = 1,
u(a2) = 0 and the second has u(a1) = 1/2, u(a2) = 1/2,
then we have

dist+(f, σ) ≥ sw(a1)− sw(a2) =
1

2
· n.

This again extends to m ≥ 3; for m = 3 the instance
demonstrating Claim 3.2 also gives dist+(f) ≥ 1

2 · n.

3.1 Two Alternatives
As a warm-up, we begin with the case when there arem = 2
alternatives. Here we may compute the optimal randomized
SCF directly.
Claim 3.4. For m = 2 alternatives, the optimal SCF
chooses each a ∈ A with probability proportional to the
number of voters ranking a first.

Note that since this is the optimal SCF, choosing an
equally divided profile of voters yields a lower bound of
dist+(f) ≥ 1/4 for all SCFs f , recovering that of (Cara-
giannis et al. 2017).

It is also noteworthy that this rule is in PVS:

Observation 3.5. For m = 2 the optimal randomized rule
belongs to PVS , given by scoring vector s∗ = (1, 0).

For more than two alternatives, the problem of identifying
optimal SCFs or even optimal PVSs becomes difficult.

3.2 Plurality and RD
When there are two alternatives, it is intuitive that the best
deterministic rule should choose the alternative most fre-
quently ranked first. In the class of deterministic rules, it
turns out that this is always the best possible, as shown
by Caragiannis et al. (2017) in the general setting of choos-
ing k winners out of m alternatives.
Theorem 3.6 (Theorem 1 in (Caragiannis et al. 2017)). Plu-
rality is an optimal deterministic SCF, with additive distor-
tion 1

2 · n.
The randomized analog to Plurality is Randomized Dicta-

torship, and Section 3.1 revealed that RD is the optimal SCF
in the two alternative setting, attaining additive distortion
1
4 · n and significantly outperforming Plurality. One might
reasonably hope that RD continues to significantly outper-
form Plurality for m ≥ 3. However, we show that this is not
the case:
Theorem 3.7. RD has additive distortion 1

2

(
1− 1

m

)
· n.

In fact, we must incorporate more than just voters’ first
choices in order to asymptotically improve upon 1

2 · n. In
the spirit of Gross, Anshelevich, and Xia (2017), who give
a lower bound of 3− 2/m on the distortion of favorite-only
mechanisms in the metric setting, the proof of Theorem 3.7
can be modified in order to show that:
Claim 3.8. All generalized PVSs (s, P ) ∈ PVS∗ with s =
(1, 0, . . . , 0) have additive distortion at least 1

2

(
1− 1

m

)
· n.

Since RD is optimal within the class of favorite-only
mechanisms, we continue the search for better rules among
PVSs which score beyond voters’ first choices.

3.3 An Asymptotically Optimal rule in PVS
After the success in Section 3.1, we might hope to derive
optimal PVSs for m ≥ 3 directly. Unfortunately, the natural
formulations of finding such optimal PVSs are nonconvex
max-min optimization problems which we have been unable
to solve. In order to render this problem tractable, we let
a∗ denote the alternative which maximizes social welfare,
and we ignore the social welfare derived by choosing any
alternative besides a∗. This provides an upper bound on the
additive distortion of a given rule. We call this the best-or-
bust bound, and we will use it repeatedly:

dist+(f) ≤ sw(a∗)(1− Pr[f(σ) = a∗]). (1)

Informally speaking, this bound is apt because in the worst
case and for large m, the non-a∗ alternatives may evenly
divide the remaining utility of the voters. In this case, the
social welfare attained by choosing an alternative other than
a∗ is approximately n−sw(a∗)

m , and so (1) is asymptotically
tight for PVS as m becomes large.

We formulate the problem of finding the optimal
PVS under eq. (1) in (8) below, and prove that



the scoring vector which optimizes this problem is
s∗ = (25/33, 7/33, 1/33, 0, . . . , 0) for all m ≥ 3. Since it is
the PVS which minimizes the upper bound eq. (1), we call
this the Best-or-Bust (BoB) rule.

This in turn implies the following theorem:
Theorem 3.9. For allm ≥ 3, dist+(BoB) ≤ 11

27 ·n. It is fur-

thermore a
(

1− 16
27

1
m−1

)−1

≤
(

1 + 1
m−1

)
-approximation

to the optimal PVS for all m ≥ 3.
We now set about formulating the problem of finding the

PVS which minimizes the right-hand side of Equation (1).
For a given choice of α ∈ [0, 1] and scoring vector s =
(s1, . . . , sm) for which ‖s‖1 = 1, we may parameterize the
solutions according to the optimum social welfare α · n at-
tainable. Let a∗ be the alternative for which sw(a∗) = α ·n;
we will then consider the worst-case probability that the
PVS fs selects a∗.

To this end, let xi denote the proportion of voters [n] who
rank a∗ ith. Note that since rankings are assumed to be com-
plete, ‖x‖1 = 1. Since fs is a randomized scoring rule,
and the probability of fs choosing a∗ is less than 1, in the
worst case a∗ has maximum utility possible given its vec-
tor of ranking proportions x. Therefore we may assume that
sw(a∗) = n ·

∑
i

1
i xi.

We may then identify the worst-case best-or-bust bound
attained by s for given α by solving the linear program

D+(s, α) := max α− α
∑
i

sixi (2)

s.t.
∑
i

1

i
xi = α, x ∈ ∆[m]. (3)

The objective (2) is (up to scaling by n) equal to the best-
or-bust bound, since sw(a∗) = α · n and we have that
sw(a∗) Pr[fs(σ) = a∗] = α·n∑

i si

∑
i sixi = α · n

∑
i sixi,

since ‖s‖1 = 1 by assumption. By optimizing over α as
well, we may similarly characterize dist+(fs) as the opti-
mal value of a quadratic program:

D+(s) := max D+(s, α) (4)
s.t. 0 ≤ α ≤ 1, (5)

where eq. (5) captures that sw(a∗) ≤ n, since each voter’s
utilities are normalized to 1.

We might then hope to derive the optimal PVS directly,
by solving s∗ := arg minsD

+(s). This takes the following
form:

s∗ := arg minD+(s) (6)
s.t. s ∈∆[m].

Finally note that α = α
∑
i xi; therefore constraints (3)

imply (5). We may also replace α with
∑
i

1
i xi. Taken to-

gether, these let us rewrite (4) as follows:

D+(s) := max

(∑
i

1

i
xi

)(∑
i

(1− si)xi

)
(7)

s.t. x ∈∆[m].

The general problem for which we hope to find optimal
s∗ is then

D+ := min
s

max
x

(∑
i

1

i
xi

)(∑
i

(1− si)xi

)
(8)

s.t. s, x ∈∆[m].

Two Alternatives and the Harmonic PVS As noted in
Observation 3.5, the optimal SCF when m = 2 is the PVS
given by s = (1, 0). On the other hand, for m = 2 the opti-
mal scoring vector for the formulation (8) is s∗2 = (2/3, 1/3).
This illustrates that the formulation above (and the best-or-
bust bound) indeed only asymptotically capture the problem
of identifying the optimal PVS for each m.

Incidentally, this s∗2 = (2/3, 1/3) coincides with the har-
monic scoring vector for m = 2. However this coincidence
does not continue: for m = 3 the harmonic scoring vec-
tor s = (6/11, 3/11, 2/11) does not coincide with the opti-
mal score for (8), as we show in the next section. Indeed
the harmonic PVS incurs an additive distortion of at least
(1 − H−1

m ) · n, which is witnessed by the profile in which
all voters value the same alternative with utility 1. Since
H−1
m = o(1), this incurs additive distortion which is asymp-

totically the worst possible.

Three Or More Alternatives One might expect that for
eachm there is a distinct randomized scoring rule with scor-
ing vector s∗m which optimizes (8). However it turns out that
the same scoring vector s∗ which (together with a suffix of
trailing zeros) optimizes (8) for all m ≥ 3 simultaneously.
Lemma 3.10. For all m ≥ 3, the unique optimal solution
to (8) is the scoring vector s∗ = (25/33, 7/33, 1/33, 0, . . . , 0),
obtaining the optimum objective value 11

27 ≈ 0.407.
This candidate optimizer s∗ of (8) was first identified via

computer-assisted search. We now prove that it is optimal.
The proof proceeds in two stages. We begin by restricting

the inner problem (7) to a new problem D
+

(s); this gives a
corresponding relaxation of the outer problem (8). We then
argue that, for m = 3, if D

+
(s) ≤ 11

27 then s = s∗. Given
this s∗, we demonstrate that the objective does not increase
when we move from the restricted inner problem to the gen-
eral inner problem (7):
Lemma 3.11. For m = 3, the unique optimal solution to
(8) is the scoring vector s∗ = (25/33, 7/33, 1/33), obtaining
objective value 11

27 .
We finally show that this s∗ does not incur a larger objec-

tive even for m > 3, and that for fixed m > 3 no other s
can do better; this demonstrates that s∗ optimizes (8) for all
m ≥ 3 simultaneously, proving Lemma 3.10. The proof of
Theorem 3.9 then follows.

3.4 An Additive Distortion Instance-Optimal SCF
Although the PVS derived in Section 3.3 is asymptotically
optimal within PVS , we do not anticipate that it is optimal
among all SCFs, even asymptotically. In pursuit of better
rules, we turn to instance-optimal SCFs.

The instance-optimal SCF from the perspective of addi-
tive distortion, for any given profile σ, mimics the minimizer



Algorithm 1: ADDITIVEOPTIMAL

Input: Ranking σ ∈ SnA
Output: Distribution p∗ ∈ ∆m minimizing dist+(p, σ)

for a, b ∈ A do
wba ←

∑
i(σ
−1
i )−11{b <i a}

end for
wa ← (wba)b∈A for each a ∈ A
p∗ ← arg minp{D : waa − pTwa ≤ D ∀a ∈ A, p ∈ ∆A}
return p∗

of dist+(f, σ) over all SCFs f (which for fixed σ are prob-
ability distributions over A). In particular,
AddOpt(σ) := arg min

f
dist+(f, σ)

= min
p∈∆A

max
u.σ

(
max
a∗∈A

sw(a∗)− Ea∼p[sw(a)]

)
.

We make use of Lemma 3.1 to show the following, which
we empirically test in Section 5:
Theorem 3.12. For any profile σ, Algorithm 1 computes the
distribution overA which minimizes (expected) additive dis-
tortion in polynomial time.

4 Distortion With a Promise
We began by motivating additive distortion based on the ob-
servation that traditional distortion may not be the best met-
ric when the maximum social welfare attainable is poten-
tially quite large. For a given profile σ, additive distortion
provides a soft sort of guarantee with respect to maximum
attainable welfare, in the following sense: for u, u′.σ where
the maximum attainable welfare is higher under u than u′,
additive distortion measures the extent to which a SCF pro-
vides simultaneous guarantees for both utility profiles simul-
taneously, requiring additively better guarantees for u.

In this section we instead suppose we are promised that
there exists an alternative with high social welfare, and
ask about distortion subject to this promise. We define α-
promise distortion as the distortion over all profiles (σ, u)
for which u satisfies the α-promise of Definition 2.2:
Definition 4.1. For α ∈ [0, 1], the α-promise distortion of a
rule f is given by

distα(f) := max
σ

max
u.σ
u∈Uα

dist(f, σ),

where Uα is the collection of u satisfying the α-promise.
Since α-promise multiplicative distortion and additive

distortion both address the high-stakes setting, our first re-
sult interrelates the two:
Claim 4.2. For any randomized SCF f ,
• If dist+(f) ≤ β · n, then distα(f) ≤ α

α−β .
• If distα(f) ≤ γ, then dist+(f) ≤ max(α · n, n− n/γ).

In the promise setting, we might also hope to circum-
vent the relatively low-welfare Ω(

√
m) lower bound given

in (Boutilier et al. 2015). Indeed, the lower bound instance in
(Boutilier et al. 2015) translates directly into a lower bound
on distortion with an α-promise:

Theorem 4.3. For any randomized SCF f ,

distα(f) = Ω(min{
√
m, 1/α}).

A slight modification of the Stable Lottery Rule fSLR in-
troduced by Ebadian et al. (2022) yields a matching upper
bound for all α ≥ 1/

√
m. In particular, the modified rule

samples alternatives from the stable lotteries of Cheng et al.
(2020), which are distributions over committees of size 2/α.

Theorem 4.4. There is an SCF `α with distα(`α) = O
(

1
α

)
.

4.1 Additive Distortion With a Promise
We now turn to α-promise additive distortion, which is
defined analogously to Definition 4.1. In this subsection,
we are focused on the robustness of each rule, where we
ask how the additive distortion guarantees degrade with the
promise α. Intuitively, this asks “How well do these rules
perform when the winner is clear?” We consider α ≥ 1/2;
for all α < 1/2 we know the additive distortion is at most α.

We begin with three deterministic scoring rules:
• The Plurality Rule (fPlur) is a deterministic scoring rule

with score vector s = (1, 0, . . . , 0).
• The Harmonic Rule (fHarm) is a deterministic positional

scoring rule with score vector s = (1, 1/2, . . . , 1/m).
• The Borda Rule (fBorda) is a deterministic positional

scoring rule with score vector s = (m−1,m−2, . . . , 0).
We begin by showing that Plurality and the Harmonic

Rule are robust for α ≥ 3/4, but once α < 3/4 their addi-
tive distortion becomes as bad as the worst case:
Claim 4.5. For the Plurality Rule (fPlur),

dist+
α (fPlur) =

{
0 for α ≥ 3/4
1/2 for α < 3/4.

Claim 4.6. For the Harmonic rule (fHarm),

dist+
α (fHarm)

{
= 0 for α ≥ 3/4

≥ 1/2 for α < 3/4.

Claim 4.7. For the Borda rule (fBorda),

dist+
α (fBorda)

{
= 0 for α ≥ m−1

m

≥ m−1
m − 1

m2 for α < m−1
m .

Plurality and the Harmonic Rule are robust for α ≥ 3/4,
which is the largest possible interval of α on which any
SCF can guarantee an α-promise additive distortion of 0. For
smaller α the situation for the Borda Rule is much worse. In
particular, Borda ceases to be robust as soon as α dips below
m−1
m . Lastly, we consider Randomized Dictatorship:

Claim 4.8. For Randomized Dictatorship,

dist+
α (RD)

=

{
2α(1− α)− 2(1−α)2

m−1 for α ≥ 1
2

(
1 + 1

m

)
1
2

(
1− 1

m

)
for α < 1

2

(
1 + 1

m

)
.

In particular, as we might expect for randomized rules,
additive distortion decays smoothly towards 0 as α→ 1.
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Figure 1: Additive distortion of voting rules on the Vermont, Glasgow, Debian, and APA datasets, normalized by n.

5 Experiments
We evaluated the performance of various SCFs on four
datasets of election data from PrefLib (Mattei and Walsh
2013): Vermont consists of data from public office elections
in 2014 (15 different races, with 3 to 6 candidates and 532
to 1960 voters per race); Glasgow consists of data from the
2007 Glasgow City Council elections (21 wards, with 8 to
13 candidates and 5199 to 12744 voters per ward); Debian
consists of votes for the Debian logo (8 elections, with 4 to
9 alternatives and 142 to 504 voters per election); and APA
consists of election data from the American Psychological
Association between 1998 and 2009 (12 elections, with 5
alternatives and 13318 and 20239 voters).

We also considered seven SCFs. Four of them are random-
ized scoring rules: Randomized Dictatorship has score vec-
tor s = (1, 0, . . . ) (Abdulkadiroğlu and Sönmez 1998); PVS
Borda has score vector s = (m−1,m−2, . . . , 0); PVS Har-
monic has score vector s = (1, 1/2, . . . , 1/m); and BoB has
score vector s = (25/33, 7/33, 1/33, 0, . . . ). The other three
are instance-optimal rules: Det Add OPT is the determinis-
tic rule that minimizes additive distortion (Caragiannis et al.
2017); Mult OPT is the randomized rule that minimizes mul-
tiplicative distortion (Boutilier et al. 2015); and Add OPT is
the randomized rule that minimizes additive distortion based
on Theorem 3.12.

Notably, all data was presented as a complete ranking that
allowed ties between alternatives. Therefore in computing
the rules, we split weight equally in the PVSs (i.e., if k alter-
natives were tied, they split the total score that the rule allo-
cates over those k positions) and enforced the constraint that
the implicit utility assigned to all tied alternatives is equal.

The additive distortions of each voting rule for each
dataset are depicted in Figure 1. BoB generally outperforms
Det Add OPT on all datasets, meaning that it results in
lower additive distortion than any deterministic rule, which

is why we compare its performance to the other random-
ized scoring rules RD, PVS Borda, and PVS Harmonic.
We find that RD consistently outperforms BoB on the four
datasets, while PVS Borda and PVS Harmonic both do
worse. This is surprising, since Theorem 3.9 demonstrates
that BoB is asymptotically worst-case optimal among the
class of all PVSs. This suggests that real-life instances may
not resemble worst-case additive distortion instances, and
that more “imbalanced” randomized positional scoring rules
(with more precipitous drop-offs in scores after the first po-
sition) result in lower additive distortion in practice.

Notably, Caragiannis et al. (2017) performed experiments
in which Det Add OPT performed the best of the (determin-
istic) rules that they tested; the fact that both BoB and RD
outperform Det Add OPT in terms of worst-case additive
distortion is surprising and encouraging.

Additionally, there is a separation between the perfor-
mance of Add OPT and Mult OPT (particularly for the
Debian and APA datasets), which suggests that existing
distortion-optimal rules do not optimize for additive distor-
tion. Despite this separation, Mult OPT often outperforms
the randomized positional scoring rules we implemented.

Furthermore, note that Add OPT significantly outper-
forms all rules on all elections. Encouragingly, calculating
Add OPT is extremely efficient due to Theorem 3.12, and
we expect that this approach is scalable to much larger elec-
tions. In comparison, Mult OPT took on the order of thou-
sands of times longer than the others we tested.

6 Discussion
There are many exciting directions for future work. Most
immediately, it would be nice to close the gap between our
upper and lower bounds of 5

18 · n and 11
27 · n for random-

ized rules. It would also be interesting to explore the additive
distortion guarantees of more rules (especially randomized



rules) in the α-promise setting. We believe that is also worth
further exploring the class of rules PVS∗, since it features
rules that perform remarkably well with respect to additive
and multiplicative distortion in a range of settings. Finally, it
would be interesting to characterize the instances on which
multiplicative and additive distortion come apart; this could
help to determine which distortion is the right fit in various
settings.
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A Omitted Claim from Section 1
In Section 1 we claim without proof that, under the unit-capped (as contrasted with the unit-sum) assumption on agents’ implicit
utilities, the multiplicative distortion of choosing an alternative uniformly at random is m, and that this is tight. Letting UAR
(for uniform at random) denote this rule, we provide a proof of this claim here:
Claim A.1. dist(UAR) = m under the unit-capped implicit utility assumption, and this is optimal among all randomized
SCFs.

Proof. We begin by showing that dist(UAR) ≤ m in this setting; we then show that no randomized SCF has distortion less
than m. Given utility profile (u, σ), let a∗ be the social-welfare-maximizing alternative. Then

Ea∼f(σ) =
1

m
sw(a∗) +

1

m

∑
a 6=a∗

sw(a) ≤ 1

m
sw(a∗).

this in turn implies that

sw(a∗)

Ea∼f(σ)
≥ sw(a∗)

1
m sw(a∗)

=
1

m
,

and so

dist(UAR) = max
σ

max
u.σ

sw(a∗)

Ea∼f(σ)
≤ m.

On the other hand, fix a randomized SCF f and consider the symmetric profile on m = n alternatives; by the pigeonhole
principle there is some alternative a∗ for which Pr[f(σ) = a∗] ≤ 1

m . Next suppose that the first agent values u1(a∗) = 1
and u1(a) = 0 otherwise, and all other agents have no utility for all alternatives: ui(a) = 0 for all i 6= 1 and all a. Then
Ea∼f(σ[sw(a)] ≤ 1

m while sw(a∗) = 1, and so dist(f) ≥ m.

B Omitted Proofs from Section 3
Lemma 3.1. For each SCF f , the utility profile that witnesses the maximum of dist+(f) is normalized, i.e.,

∑
a ui(a) = 1 for

all voters i ∈ [n].

Proof. We begin by decomposing additive distortion.

dist+(f) = max
σ

dist+(f, σ)

= max
σ

max
a∗∈A

dist+(f, σ, a∗)

= max
σ

max
a∗∈A

∑
i∈[n]

dist+i (f, σ, a∗),

where

dist+(f, σ, a∗) := max
u.σ

[
sw(a∗)−

∑
a∈A

Pr[f(σ) = a] sw(a)

]
denotes the worst-case distortion given a profile σ and a randomized SCF f with respect to alternative a∗ and

dist+
i (f, σ, a∗) := max

ui.σi

[
ui(a

∗)−
∑
a∈A

Pr[f(σ) = a] ui(a)

]

denotes the contribution of voter i toward dist+(f, σ, a∗).
We now show that the utilities that maximize dist+

i (f, σ, a∗) for every voter i are of the following form. Let ki be the position
of a∗ in σi. Then, let ui(a) = 1/ki if σi(a) ≤ ki and ui(a) = 0 otherwise. Note that this utility profile satisfies

∑
a ui(a) = 1.

Now, let f(a) represent the probability that f chooses alternative a. Furthermore, let k be the position of a∗ in σi, and define
q :=

∑
a:a�ia∗ f(a), s := f(a∗), and r :=

∑
a:a∗�ia f(a). In other words, q represents the total probability mass assigned by

f to alternatives that appear before a∗ in σi, r represents the probability assigned by f to a∗, and s represents the probability
assigned by f to alternatives that appear after a∗ in σi. By definition, we have that q+ r+ s = 1. Now, note that we can denote
the contribution of voter i to the total additive distortion as

dist+i (f, σ, a
∗) := max

ui.σi

[
ui(a

∗)−
∑
a∈A

Pr[f(σ) = a] ui(a)

]



= max
ui.σi

q
ui(a∗)− (1/q)

∑
a:a�ia∗

ui(a)f(a)

+ r (ui(a
∗)− (1/r)ui(a

∗)f(a∗)) + s

ui(a∗)− (1/s)
∑

a:a∗�ia

ui(a)f(a)


= max
ui.σi

q
ui(a∗)− (1/q)

∑
a:a�ia∗

ui(a)f(a)

+ s

ui(a∗)− (1/s)
∑

a:a∗�ia

ui(a)f(a)


because f(a∗) = r by definition.

We will now argue that our choice of ui maximizes this expression. For the first term, note that ui(a
∗) −

(1/q)
∑
a:a�ia∗ ui(a)f(a) ≤ 0 because (1/q)

∑
a:a�ia∗ ui(a)f(a) captures the average utility of alternatives that are pre-

ferred to a∗ in σi. Our choice of utilities results in ui(a∗) − (1/q)
∑
a:a�ia∗ ui(a)f(a) = 0, which is the maximum value

this term can achieve. As for the second term, note that our choice of utilities independently maximizes ui(a∗) subject to util-
ity constraints imposed by σi and simultaneously minimizes

∑
a:a∗�ia ui(a)f(a). Because total additive distortion is additive

over voters and our choice of utilities maximizes each voter’s individual contribution toward additive distortion, our choice of
utilities is maximizes additive distortion subject to the constraint that a∗ is the true best alternative.

Claim 3.4. For m = 2 alternatives, the optimal SCF chooses each a ∈ A with probability proportional to the number of voters
ranking a first.

Proof. If there are two alternatives then the profile σ may be parameterized by a single variable λ which denotes the proportion
of [n] ranking alternative a1 before alternative a2. Therefore in this setting each randomized social choice function is given by
some p : [0, 1]→ [0, 1], where p(λ) is the probability that the rule chooses a1 given λ.

To begin, let us fix λ and derive the optimal p. For fixed λ and p, and observing that by assumption 2.1 sw(a2) = n−sw(a1),
the additive distortion is given by

dist+(λ, p) = max
u.λ

(max(sw(a1), n− sw(a1))

−(p · sw(a1) + (1− p) · (n− sw(a1))))

= n ·max
u.λ

(
max(w, 1− w)

− (p · w + (1− p) · (1− w))
)
,

where w := sw(a1)/n for convenience.
There are two cases to consider: when a1 is the utility maximizer, and when a2 is. Letting d+

1 and d+
2 denote the distortions

in these cases, and simplifying, we have

d+
1 (λ, p) = n ·max

u.λ

(
(1− p)(2w − 1)

)
,

d+
2 (λ, p) = n ·max

u.λ

(
p(1− 2w)

)
.

In the first case, the umaximizing the expression for a given λ puts maximal utility on a1, and so w = (λ+1)/2. In the second,
the maximizing u puts maximal weight on a2, and so w = λ/2. Therefore

d+
1 (λ, p) = n · (1− p)λ,
d+

2 (λ, p) = n · p(1− λ),

and so

d+(λ, p) = max(d+
1 (λ, p),

d+
2 (λ, p)) = n ·max((1− p)λ, p(1− λ)).

Since the first term is monotonically decreasing in p and the second is monotonically increasing, this is minimized when they
are equal, giving p = λ.

Theorem 3.6 (Theorem 1 in (Caragiannis et al. 2017)). Plurality is an optimal deterministic SCF, with additive distortion 1
2 ·n.

Proof. Claim 3.3 establishes a lower bound of 1
2 ·n for all deterministic SCFs, so it remains to show that the additive distortion

incurred by Plurality is never worse.
For a given instance let a∗ be the social welfare maximizing alternative, and suppose without loss of generality that Plurality

chooses a 6= a∗. There are three types of voters to consider: voters ranking a first, voters ranking a∗ first, and voters ranking
something else first. Denote these voter types A, B, and C, and suppose that an α, β, γ proportion of the voters are of each
type, respectively. Note that α+β+γ = 1 and that α ≥ β, since Plurality chose a over a∗. Also observe that uA(a∗) ≤ uA(a)



for all voters of type A, since they prefer a to a∗, and that uC(a∗) ≤ 1/2 for similar reasons. Therefore the contributions to the
additive distortion from each group are

d+
A = α n ·max

uA
[uA(a∗)− uA(a)] = 0

d+
B = β n ·max

uB
[uB(a∗)− uB(a)] = β n

d+
C ≤ γ n ·max

uC
[uC(a∗)− uC(a)] =

1

2
γ n,

with inequality for d+
C because a∗ may not be ranked second for all type C voters. These together yield

dist+(Plurality) = d+
A + d+

B + d+
C ≤ (β + γ/2)n ≤ 1

2
n,

since β ≤ α.

Proof of Theorem 3.7. To start, let βa be the proportion of voters ranking a first, and let a∗ be the social welfare maximizing
alternative. Note that RD chooses an alternative according to the distribution β. Since additive distortion is linear in the voters,
it is maximized when it is maximized for all voters individually, and each voter i contributes ui(a∗)− Ea∼β [ui(a)].

For an voter ranking a∗ first, we may therefore assume that they value u(a∗) = 1 and all other alternatives confer no utility.
For voters i ranking a 6= a∗ first, their contribution to the distortion may be rewritten as

u(a∗)(1− βa∗)− βaui(a)−
∑

a′ 6=a,a∗
βa′ui(a

′).

Given that this voter values a above a∗, the ranking and utility vector which simultaneously maximizes this first term and
minimizes the others assigns ui(a) = ui(a

∗) = 1/2, and ui(a′) = 0 for all other a′. Combining these assumptions and
simplifying, we obtain

dist+(RD) = max
β

(
sw(a∗)−

∑
a

n · βa sw(a)

)

= max
β

n ·

(
1

2

(
1−

∑
a

β2
a

))
=

1

2

(
1− 1

m

)
· n

where the last inequality follows from the `1 − `2 inequality, which implies that the maximum is obtained when βa = 1/m for
all a ∈ A.

Proof of Claim 3.8. Consider the tight instance given in the proof of theorem 3.7, where an equal number of voters rank each
alternative first, and all voters not ranking a∗ first rank a∗ second. Therefore the scores derived from s = (1, 0, . . . , 0) are
equal; Sa = Sa′ for all a, a′ ∈ A. (Note that non-neutral “favorite-only” mechanisms do only worse than neutral mechanisms
on this instance). Given this uniform aggregate score vector S, every neutral mechanism f returns the uniform distribution over
A. This bounds its additive distortion as

dist+(f) ≥ m+ 1

2m
− 1

2m

(
m− 1

m
+
m+ 1

m

)
=

1

2

(
1− 1

m

)
· n,

as desired.

Lemma 3.11. For m = 3, the unique optimal solution to (8) is the scoring vector s∗ = (25/33, 7/33, 1/33), obtaining objective
value 11

27 .

Proof of Lemma 3.11. Consider the restricted inner problem D
+

(s) given by

D
+

(s) : = max

(∑
i

1

i
xi

)(∑
i

(1− si)xi

)
(9)

s.t. x =

{
(β, 1− β, 0) for β ∈ [0, 1] or
(γ, 0, 1− γ) for γ ∈ [0, 1]

this is a restriction of (7) since the x which are feasible for (9) are also feasible for (7).



Writing s = (s1, s2, 1− s1 − s2), the objective of (9) for each form of x is

max
β∈[0,1]

1

2
(β + 1) (1− (s1 − s2)β − s2) , (10)

max
γ∈[0,1]

1

3
(2γ + 1) (s1 + s2 + γ(1− 2s1 − s2)) . (11)

If D
+

(s) ≤ 11/27 then both (10) ≤ 11/27 and (11) ≤ 11/27. Taking derivatives, we find that the β which maximizes the
argument of (10) in terms of s1 and s2 is either β = 0, β = 1, or β = 1−s1

2(s1−s2) (provided that 0 ≤ 1−s1
2(s1−s2) ≤ 1). Requiring

that D
+

(s) ≤ 11/27 in each of these cases yields the inequalities

1− s1 ≤ 11/27, (12)
1− s2

2
≤ 11/27, (13)

(1 + s1 − 2s2)2

8(s1 − s2)
≤ 11/27. (14)

These first two constraints imply that 1−s1
2(s1−s2) ≥ 0; we therefore require (14) when 1−s1

2(s1−s2) ≤ 1.
The second partial formulation (11) for the critical values γ = 0, γ = 1, and γ = 1+s2

4(2s1+s2−1) similarly yields the inequalities

s1 + s2

3
≤ 11/27 (15)

(4s1 + 3s2 − 1)2

24(2s1 + s2 − 1)
≤ 11/27 (16)

as well as (12) again. The inequality (15) is trivial, since we assume that w ≥ 0 and
∑
i si = 1. We again require (16) so long

as 0 ≤ 1+s2
4(2s1+s2−1) ≤ 1; fortunately 0 ≤ 1+s2

4(2s1+s2−1) follows from (12), and 1+s2
4(2s1+s2−1) ≤ 1 follows from (12) and (13)

together.
There are now two cases to consider. First, we argue that the inequalities 1−s1

2(s1−s2) ≥ 1 and (16) are not simultaneously
satisfiable; we may therefore assume that 1−s1

2(s1−s2) ≤ 1 and consequently that (14) holds. The first inequality is the half-plane

3s1 − 2s2 ≤ 1

(since (12) implies that s1 > s2), and so in order to argue incompatibility it suffices to consider the optimization problem,
where the constraint is a rearrangement of (16):

min
s

3s1 − 2s2

s.t. (4s1 + 3s2 − 1)2 − 88

9
(2s1 + s2 − 1) ≤ 0.

A minimum objective value greater than one will demonstrate unsatisfiability. By the change of variable x = 4s1 + 3s2 − 1
and y = 3s1 − 2s2, this becomes

min y

s.t.
153

176
x2 − 7

2
x+ 5 ≤ y,

which has a minimum value of 226/153 > 1.
We have shown that (14) and (16) must hold if the restricted problem (9) is to have a solution with objective at most 11/27.

We finally argue that s∗ is the unique s satisfying both (14) and (16). As above, (12) implies that the denominators of (14) and
(16) are positive, and we may therefore rewrite them as

(1 + s1 − 2s2)2 − 88

27
(s1 − s2) ≤ 0 (17)

(4s1 + 3s2 − 1)2 − 88

9
(2s1 + s2 − 1) ≤ 0. (18)

We will show that (17) and (18) are simultaneously satisfied at the single point (s∗1, s
∗
2) = (25/33, 7/33) by way of the line `

given by 2s1 + 7s2 = 3, which separates their feasible regions. Through the changes of variables r = −s1 + 2s2, t = 2s1 + s2,
and u = 4s1 + 3s2, v = −3s1 + 4s2, (17) and (18) become

3

88
(45− 2r + 45r2) ≤ t (19)



1

176
(−2425 + 1418u− 225u2) ≥ v, (20)

while ` takes the form 12r + 11t = 15 and 29u+ 22v = 75.
First, if (17) and 2s1 + 7s2 ≤ 3 then equivalently (19) and t ≤ 15/11− 12/11 · s. These imply that

3

88
(45− 2r + 45r2) ≤ 15/11− 12/11 · r

15

88
(1 + 3r)2 ≤ 0

r = −1/3 t = 19/11

s1 = 25/33 s2 = 7/33.

Similarly, if (18) and 2s1 + 7s2 ≥ 3 then equivalently (20) and v ≥ 75/22− 29/22 · u. These imply that

1

176
(−2425 + 1418u− 225u2) ≥ 75/22− 29/22 · u

− 25

176
(11− 3u)2 ≥ 0

u = 11/3 v = −47/33

s1 = 25/33 s2 = 7/33.

This demonstrates that the feasible regions of (17) and (18) are contained within each of the two half-planes bordered by `.
Since both (17) and (18) intersect with ` only at s∗, we conclude that s∗ is the unique point satisfying both (17) and (18).

Given that s∗ is the unique minimizer of (9), it remains to argue that it is the unique optimizer of (8) for m = 3. Writing
x = (x1, x2, 1− x1 − x2), the objective of D+(s∗) takes the explicit form

D+(s∗) = max
x

1

99
(2 + 4x1 + x2)(16− 12x1 − 3x2)

= max
x

11

27
− 1

33

(
4x1 + x2 −

5

3

)2

,

which demonstrates that no x obtains a larger objective on s∗ even when we relax the inner problem from (9) to (7) when
m = 3.

Lemma 3.10. For allm ≥ 3, the unique optimal solution to (8) is the scoring vector s∗ = (25/33, 7/33, 1/33, 0, . . . , 0), obtaining
the optimum objective value 11

27 ≈ 0.407.

Proof. Given the scoring vector s∗ = (25/33, 7/33, 1/33, 0, . . . , 0), we argue that D+(s∗) ≤ 11/27 for all m > 3. Recall that the
objective of (7) is

max
x

(∑
i

1

i
xi

)(∑
i

(1− si)xi

)
.

For any x with xi > 0 for any i ≥ 4, the vector x′ := (x1, x2, x3, x
′
4, 0, . . . , 0) for x′4 :=

∑
i≥4 xi will only increase this

objective, since the first factor in this product increases from x to x′, and the second factor remains unchanged. Therefore we
may assume without loss of generality that m = 4.

From here, we next show that we may in fact restrict our attention to x of the form x = (x1, x2, x3, 0, . . . , 0). We will take a
somewhat convoluted approach, which nevertheless seems to be the best available. To see this, consider the explicit form which
the objective of (8) takes for s∗ and m = 4. Substituting x4 = 1− (x1,+x2 + x3), it takes the form

O4(x) := − 1

396
(3 + 9x1 + 3x2 + x3)(−33 + 25x1 + 7x2 + x3).

We may ask what x ∈ ∆4 maximizes this objective, which may be formulated as the following program:

max O4(x) (21)
s.t. x1 + x2 + x3 ≤ 1 (λ) (22)

x1, x2, x3 ≥ 0. (µi) (23)

We would like to establish that x4 = 0, which is equivalent to constraint (22) being tight at optimality.



Since any active constraints are independent and linear, any x∗ maximizing (21) must satisfy the KKT conditions (note that
it must obtain a maximum, since it is a continuous function on a compact set). The KKT conditions of (21) are the linear
inequalities

−∂O4(x)

∂xi
− µi + λ = 0 i ∈ {1, 2, 3}

for µi ≥ 0, with strict equality for constraint i if x∗i > 0. If (22) is loose (i.e. x4 > 0) then λ = 0 by complementary slackness;
since µi ≥ 0, this becomes

1

198
(111− 225x1 − 69x2 − 17x3) ≤ 0 (C1)

1

198
(39− 69x1 − 21x2 − 5x3) ≤ 0 (C2)

1

198
(15− 17x1 − 5x2 − xx3) ≤ 0 (C3),

with constraint (Ci) tight if xi > 0 at optimality. By checking the (x1, x2, x3) which are feasible for both (21) and these linear
constraints, we may determine that the only candidate optima of (21) for which x4 > 0 have x1 = x2 = 0 or x1 = x3 = 0 or
x2 = x3 = 0. Calculating the optima for these single-variable cases, we may confirm that all feasible candidate optima have
objective at most 1/4 < 11/27. Since we know that 11/27 is attainable for this problem, it follows that we may assume that
x4 = 0 at optimality.

By showing that without loss of generality the xmaximizing the inner problem (7) are of the form x = (x1, x2, x3, 0, . . . , 0),
we now know by Lemma 3.11 that s∗ attains an objective of at most 11/27 for (8) for any m ≥ 4.

To confirm that s∗ is indeed the optimal solution for all m ≥ 4, we must finally argue that for any given m ≥ 4 no s can
do better—i.e. attain a strictly smaller value of D+(s). Informally this is because for any s obtaining some objective d on
(8), its prefixes must obtain d or better on the lower-dimensional problems. This is because the maximizing x may place all
of its weight on some prefix of the coordinates. Formally, suppose that s is an optimal solution to (8) for some m ≥ 4. Let
s:3 := (s1, s2, s3, 0, . . . , 0), and let s:3 denote s:3/‖s:3‖1 (and if ‖s:3‖1 = 0 then s does truly terribly, and isn’t worth worrying
about). It is clear that for fixed x = (x1, x2, x3, 0, . . . , 0) the objective of (8) is weakly greater at s:3 than it is at s:3; since x is
feasible to begin with and s:3 is feasible for (8) when m = 3, it then follows from Lemma 3.11 that the objective value of (8)
at s is at least 11/27.

Theorem 3.9. For all m ≥ 3, dist+(BoB) ≤ 11
27 · n. It is furthermore a

(
1− 16

27
1

m−1

)−1

≤
(

1 + 1
m−1

)
-approximation to

the optimal PVS for all m ≥ 3.

Proof of Theorem 3.9. Let f∗ denote this PVS with score s∗. We note first that f∗ has additive distortion d+(f∗) ≤ 11
27 · n for

all m ≥ 3, by the best-or-bust bound eq. (1). The additive distortion of a rule f is given by

dist+(f) = max
σ

max
u.σ

(
sw(a∗)−

∑
a∈A

Pr[f(σ) = a] sw(a)

)
,

while we have argued above that the objective of (7) takes the form

D+(s) = max
σ

max
u.σ

(
sw(a∗)− Pr[fs(σ) = a∗] sw(a∗)

)
(24)

for fs an PVS, and where a∗ denotes the social-welfare-maximizing alternative given u. Therefore it is clear that for any fixed
PVS fs the objective (24) is larger than the additive distortion of the rule. In particular, this is also true for the rule f∗ which
minimizes (24) over all s.

Next we argue that all PVSs fs satisfy dist+(fs) ≥
(

1− 16
27

1
m−1

)
11
27 · n. To see this, fix m and choose any scoring vector

s with corresponding rule fs. For every (rational) x as in (7), fix some alternative a∗ and consider a profile (u, σ) for which

• an xi proportion of voters rank a∗ in position i,
• for each i, an equal number of voters who rank a∗ in position i rank each alternative a 6= a∗ in each position i′ 6= i, and
• u maximizes sw(a∗) subject to consistency with σ.

Since utilities may tie, this third condition is well-defined and determines all utilities. It also guarantees that a∗ is a (not
necessarily unique) maximizer of social welfare for (u, σ). Finally, for the purposes of additive distortion it is without loss of
generality to assume u of this form given a∗ and σ, since increasing sw(a∗) for fixed σ only increases the maximized inner
term sw(a∗)− Ea∼f(σ)[sw(a)].



Let Pr[a] := Pr[fs(σ) = a] for convenience; then for each x we have

d+(fs, σ) ≥ sw(a∗)−
∑
a

Pr[a] sw(a),

and regrouping and taking the maximum over all profiles σ derived from x,

d+(fs) ≥ max
x

sw(a∗)(1− Pr[a∗])−
∑
a 6=a∗

Pr[a] sw(a)


= max

x

(
sw(a∗)(1− Pr[a∗])− (1− Pr[a∗])

n− sw(a∗)

m− 1

)
(25)

= max
x

(
sw(a∗)(1− Pr[a∗])

(
1 +

1

m− 1

)
− (1− Pr[a∗])

n

m− 1

)
, (26)

where (25) follows from the construction of σ and u given x, so that the probability of fs(σ) = a is equal for all a 6= a∗,
together with the fact that the total utility is n. This first term is precisely the objective of (8), and so by Lemma 3.10 we have

≥ max
x

((
1 +

1

m− 1

)
11

27
· n− (1− Pr[a∗])

n

m− 1

)
≥
(

1 +
1

m− 1

)
11

27
· n− n

m− 1

=

(
1− 16

27

1

m− 1

)
11

27
· n.

Since this last term is an upper bound on the additive distortion of the rule for s∗, and since this holds for all positional
scoring rules, we may take the right-hand side to be the optimal PSR for m, and then invert to obtain that f∗ is a

(
1 + 1

m−1

)
-

approximation to the optimal PVS, for all m ≥ 3.

Theorem 3.12. For any profile σ, Algorithm 1 computes the distribution over A which minimizes (expected) additive distortion
in polynomial time.

Proof. We first leverage the approach in Lemma 3.1 in order to drastically simplify the optimization problem by restricting the
space of worst-case utilities we must consider.

The worst-case additive distortion on a profile σ can be written as

dist+(σ) = min
f

dist+(f, σ)

= min
f

max
a∗∈A

dist+(f, σ, a∗).

In other words, this can be then decomposed into independently finding the best f for m different optimization problems
each corresponding to the case that a particular a∗ ∈ A is the true best alternative and then taking the minimum over these
f solutions. However, we showed in Lemma 3.1 that no matter the choice of f , for each a∗ we can explicitly write down the
utilities consistent with σ that maximize sw(a∗)−Ea∼f(σ)[sw(a)] for any f , which drastically simplifies the problem of finding
instance-optimal solutions.

In particular, given a profile σ, for each a ∈ A, compute ua as defined in Lemma 3.1 as follows. For each voter i, let ki
be the position of a in σi. Then, for all a′ ∈ A, let uai (a′) = 1/ki if σi(a′) ≤ ki and uai (a′) = 0 otherwise. Next, compute
sw(a, a′) := swua(a′) for all a, a′ ∈ A. Now, letting wa := (sw(a, a1), . . . , sw(a, an)), solve the following linear program to
minimize distortion over all vectors of probabilities p, which correspond to social choice functions f .

minD

sw(a, a)− pTwa ≤ D ∀a ∈ A∑
a∈A

pa = 1

pa ≥ 0 ∀a ∈ A



C Omitted Proofs from Section 4
Claim 4.2. For any randomized SCF f ,

• If dist+(f) ≤ β · n, then distα(f) ≤ α
α−β .

• If distα(f) ≤ γ, then dist+(f) ≤ max(α · n, n− n/γ).

Proof. We begin with the first implication. If d+(f) ≤ β · n, then by definition for all (σ, u . σ) we have that maxa sw(a) −
E[f(σ)] ≤ β · n. Therefore

dα(f) := max
σ

max
u.σ
u∈Uα

maxa sw(a)

Ea∼f(σ)[sw(a)]

≤ max
σ

max
u.σ
u∈Uα

maxa sw(a)

maxa sw(a)− β · n

≤ α · n
α · n− β · n

=
α

α− β
,

where the last inequality follows because α ≥ γ by the definition of d+.
Next, if dα(f) ≤ γ, then depending on (σ, u) there are two cases: first, if for a given (σ, u) it is the case that maxa sw(a) <

α · n, and so maxa sw(a) − Ea∼f(σ)[sw(a)] ≤ α · n also. Otherwise, by the definition of dα we have that maxa sw(a) ≤
γ · Ea∼f(σ)[sw(a)], and so

max
a

sw(a)− Ea∼f(σ)[sw(a)] ≤ max
a

sw(a)(1− 1/γ)

≤ (1− 1/γ) · n.

Combining these cases yields dist+(f) ≤ max(α, 1− 1/γ) · n.

Theorem 4.3. For any randomized SCF f ,

distα(f) = Ω(min{
√
m, 1/α}).

Proof. Suppose without loss of generality that k := 1/α ∈ N and that k and
√
m divide n. Consider an instance for which the

voters [n] are arranged into t equal groups, each sharing a utility function. The first group has ui(a) = 1 and ui(a′) = 0 for all
a′ 6= a. All remaining groups are indifferent to all alternatives, with ties broken in such a way that groups’ utility profiles are
rotationally symmetric for the first k alternatives.

Then sw(a) = n
t + n(t−1)

t
1
m , while sw(a′) = n(t−1)

t
1
m for all other alternatives. By the α-guarantee, we must have that

sw(a) ≥ α · n, which is satisfied when t ≤ k.
Given these symmetric rankings, the rule f can do no better than choosing uniformly over the first t alternatives, for an

expected social welfare of sw(f(P)) = 1
t (
n
t + n(t−1)

t
1
m ) + t−1

t
n(t−1)

t
1
m . Therefore the randomized distortion is

dist(f) =
n
t + n(t−1)

t
1
m

1
t (
n
t + n(t−1)

t
1
m ) + t−1

t
n(t−1)

t
1
m

=

{
Ω(t) t = O(

√
m)

Ω(mt ) t = Ω(
√
m).

For fixed m, this is maximized by choosing t = Θ(
√
m), proving the distortion lower bound of (Boutilier et al. 2015). Since

requiring t ≤ 1/α is sufficient to satisfy the α-guarantee, it follows that

distα(f) = Ω
(
min

{√
m, 1/α

})
.

Theorem 4.4. There is an SCF `α with distα(`α) = O
(

1
α

)
.

We take as our point of departure the analysis that Ebadian et al. (2022) give for their Stable Lottery Rule fSLR. For fixed
k ∈ N, a stable lottery is a distribution X over committees X ⊆ A, of size |X| = k for which the expected number of agents
preferring any fixed alternative a∗ to any a ∈ X is small. In particular, for a fixed preference profile σ, the lottery X is stable if
for all a∗ ∈ A, Pri∈N PrX∼X [a∗ �i X] ≤ 1

k , where a∗ �i X denotes that i ranks a∗ ahead of all a ∈ X .
Such stable lotteries are shown to exist for all σ and k in Theorem 1 of (Cheng et al. 2020).
We will now define the rule `α.



Definition C.1. For α with 1/α ∈ N, the randomized SCF `α identifies some lottery X over committees of size k = 2/α which
is stable for the input profile σ. It then samples a committee X ∼ X and finally returns an alternative a ∼ X drawn uniformly
at random.

Although we do not emphasize the efficient computability of `α in theorem 4.4, (Cheng et al. 2020) show that stable lotteries
sufficient for our purposes can be calculated in polynomial time, and so `α can be efficiently implemented.

Proof. To begin, assume that 1/α ∈ {2, 3, 4, . . .}; all α ∈ [0, 1] are within a constant factor of such an α′ ≤ α, and in such
cases an α-guarantee implies an α′-guarantee, and so this is without loss of generality.

As usual, let a∗ denote the social-welfare-maximizing alternative. For a fixed committee X , let VX denote the voters i ∈ N
for which a∗ �i X , and let V X = N \ VX denote its complement. By the definition of social welfare, for all X we have that

sw(a∗) =
∑
i∈N

ui(a
∗) =

∑
i∈VX

ui(a
∗) +

∑
i∈V X

ui(a
∗),

and so

sw(a∗) = EX∼X

∑
i∈VX

ui(a
∗) +

∑
i∈V X

ui(a
∗)

 . (27)

Since ui(a∗) ≤ 1, by the stability of X we have that

EX∼X

[∑
i∈VX

ui(a
∗)

]
≤ EX∼X [|VX |] ≤

n

k
. (28)

Using the α-promise that sw(a∗) ≥ α · n = 2nk , we find that

1

2
· sw(a∗) ≤ sw(a∗)− n

k
(29)

≤ sw(a∗)− EX∼X

[∑
i∈VX

ui(a
∗)

]
(30)

= EX∼X

 ∑
i∈V X

ui(a
∗)

 (31)

≤ EX∼X

 ∑
i∈V X

k · Ea∼Xui(a)

 (32)

≤ k · EX∼X

[∑
i∈N

Ea∼Xui(a)

]
(33)

=
2

α
· Ea∼`α(σ) [sw(a)] . (34)

Here (30) follows from (28), (31) follows from (27), (32) follows because if i ∈ V X then i has at least as much utility for some
a ∈ X as for a∗, and this a has probability 1/k of being sampled from X , and (34) follows from the definitions of k and `α.

In conclusion, we have shown that sw(a∗) ≤ 4
αEa∼`α(σ) [sw(a)], and therefore distα(`α) = O( 1

α ).

Claim 4.5. For the Plurality Rule (fPlur),

dist+
α (fPlur) =

{
0 for α ≥ 3/4
1/2 for α < 3/4.

Proof. Suppose for now that sw(a∗) = α exactly.
Next, we examine the first case. When α ≥ 3/4, this means that at least n/2 voters rank a∗ first, and therefore, if we break

ties in our favor, a∗ is the winner under Plurality and the additive distortion is 0.
In the second case, consider a profile in which a 1

2 − ε fraction of voters rank a∗ first (and value it at 1) and the other 1
2 + ε

fraction of voters ranks an alternative a 6= a∗ first. This means that a is the winner under Plurality.



Now, let Va be the set of voters who rank a 6= a∗ first. Of these voters, let a β fraction of them rank a � a∗ � . . . , where
they value a∗ and a at 1/2. The other 1 − β fraction of voters in Va are indifferent between all alternatives and value each of
them at 1/m. It is easy to verify that setting

β =
α− 1

2 −
1

2m
1
2 −

1
m

suffices to ensure that a∗ confers α · n utility:

1

2
+

1

2
· β +

(
1

2
− β

)
· 1

m
= α.

Plugging this value of β into the expression for additive distortion yields

dist+
α = α−

(
1

2
· β +

(
1

2
− β

)
1

m

)
= α−

(
1

2
·
α− 1

2 −
1

2m
1
2 −

1
m

+

(
1

2
−
α− 1

2 −
1

2m
1
2 −

1
m

)
1

m

)
= 1/2. (after simplifying)

It remains only to relax our original assumption that sw(a∗) = α exactly. Since the above expression is decreasing monoton-
ically in sw(a∗), for sw(a∗) ≥ 1/2 we may assume that sw(a∗) = α as above.

Finally, by Theorem 3.6, this bound is tight.

Claim 4.6. For the Harmonic rule (fHarm),

dist+
α (fHarm)

{
= 0 for α ≥ 3/4

≥ 1/2 for α < 3/4.

Proof. Suppose that sw(a∗) = α.
In the first case, we must show that for any α ≥ 3/4, a∗ will be selected by fHarm. Let yj represent the proportion of voters

who rank a∗ in position j. Note that the maximum score of any other alternative a 6= a∗ is (1 − y1) + 1
2 · y1 because each

voter who does not rank a∗ first can rank a first, and each voter who ranks a∗ first can rank a second. Furthermore, let y↓1(α)
represent the minimum value of y1 such that the α promise holds, i.e., it must be the case that

∑
j yj ·

1
j ≥ α because the

maximum utility a∗ can receive in position j is exactly 1/j. Note that this value of y↓1(α) also maximizes a’s score. However,
for all α ≥ 3/4, we can see that y↓1(α) ≥ 1/2, meaning that s(a) ≤

(
1− 1

2

)
+ 1

2 ·
1
2 ≤

3
4 , whereas s(a∗) =

∑
j yj ·

1
j ≥ α due

to the α promise guarantee. Therefore, for all α ∈ [3/4, 1], fHarm will select a∗ (breaking ties in our favor when α = 3/4).
For the case of 2/3 ≤ α < 3/4, consider the profile in which a 2(α− 1/2) fraction of voters rank a∗ first (with utility 1) and

another alternative a in second (with utility 0), and a 2(1 − α) fraction of voters rank a∗ second (with utility 1/2) and a first
(with utility 1/2). Note that u(a∗) = 2(α− 1/2) · n+ 1

2 · 2(1− α) · n = α · n and u(a) = 2(1−α)
2 · n = (1− α) · n.

With respect to scores, sHarm(a) = 1
2 ·2(α−1/2)+2(1−α) = 3/2−α, and sHarm(a∗) = 2(α−1/2)+ 1

2 ·2(1−α) = α.
For all α ∈ [2/3, 3/4), we indeed see that sHarm(a) > sHarm(a∗) and therefore a is chosen, yielding an additive distortion of
α− (1− α) = 2α− 1.

For the case of 1/2 ≤ α < 2/3, consider the profile in which an α fraction of voters rank a∗ first (with utility 1) and a second
(with utility 0), and the remaining 1− α fraction of voters ranks a first (with utility 1

m−1 ) and a∗ last (with utility 0). Note that
u(a∗) = α · n and u(a) = 1−α

m−1 · n.
Turning to scores, sHarm(a) = α · 1

2 + (1 − α) = 1 − α
2 , whereas sHarm(a∗) = α + 1−α

m . It is easy to verify that
sHarm(a) > sHarm(a∗) for all α ∈ [1/2, 2/3), so a will be selected, yielding an additive distortion of α− 1−α

m−1 .
Regardless ofm, for α ∈ [1/2, 3/4] the two-alternative profile above with a utility promise of 3/4 ·n gives an additive distortion

of 1/2 · n.

Claim 4.7. For the Borda rule (fBorda),

dist+
α (fBorda)

{
= 0 for α ≥ m−1

m

≥ m−1
m − 1

m2 for α < m−1
m .

Proof. Suppose that sw(a∗) = α.
For the purposes of this proof, let α · n be the exact social welfare conferred by the social-welfare-maximizing alternative.

The stated bound for α-promise additive distortion follows by taking the maximum over all social welfare values above the
promise.



When α ≥ m−1
m , the profile that minimizes the score of a∗ consists of a m−1

m fraction of voters who rank a∗ first and assign
it utility 1 and a 1

m fraction of voters who rank a∗ last and assign it utility 0. The best any other alternative a 6= a∗ can do is be
ranked second for a m−1

m fraction of voters and first for a 1
m fraction of voters.

Therefore, sBorda(a∗) ≥ m−1
m · (m− 1) + 1

m · (m− 2), and sBorda(a) ≤ m−1
m · (m− 2) + 1

m · (m− 1). It is easy to verify
that sBorda(a∗) > sBorda(a).

In the second case, note that for α ∈ [1/2, (m − 1)/m), one profile that achieves this α guarantee consists of an α fraction
of voters who rank a∗ first and assign it utility 1 and a 1 − α fraction of voters who rank a∗ last and assign it utility 0. In this
profile, sBorda(a∗) = α · (m − 1). However, consider an alternative a 6= a∗ that is ranked second whenever a∗ is ranked first
and ranked first whenever a∗ is ranked last. We can see that sBorda(a) = α · (m − 2) + (1 − α) · (m − 1), which is greater
than sBorda(a∗) for all α < m−1

m , so the Borda rule chooses a.
Note that a may be valued at 1/m every time it is ranked first and at 0 every time it is ranked last. Therefore, the additive

distortion is α− (1− α) · 1
m , which approaches α as m increases.

Claim 4.8. For Randomized Dictatorship,

dist+
α (RD)

=

{
2α(1− α)− 2(1−α)2

m−1 for α ≥ 1
2

(
1 + 1

m

)
1
2

(
1− 1

m

)
for α < 1

2

(
1 + 1

m

)
.

Proof. To begin we assume that sw(a∗) = α exactly. In order to maximize additive distortion, by now-familiar arguments may
we assume without loss of generality that all agents ranking a∗ first value it at utility 1, and all not ranking a∗ first value it
second at utility 1/2. Letting βa denote the proportion of agents ranking a ∈ A first, we have

sw(a∗) =
1

2
(1 + βa∗), sw(a) =

βa
2

for a 6= a∗.

Omitting the factor of n and noting that βa∗ = 2α− 1 (for α ≥ 1/2), we have

dist+
α (RD) = max

β

(
α−

∑
a

βa sw(a)

)

= max
β

α−
βa∗α+

∑
a 6=a∗

βa sw(a)


= α−

(
βa∗α+

m− 1

2

(
1− βa∗
m− 1

)2
)

= 2α(1− α)− 2(1− α)2

m− 1
.

It remains only to relax our original assumption that sw(a∗) = α exactly. Therefore to find the α-promise additive distortion,
we maximize over all α′ ≥ α and obtain the stated bound.


