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Abstract

We study liquid democracy, a collective decision making
paradigm that allows voters to transitively delegate their
votes, through an algorithmic lens. In our model, there are
two alternatives, one correct and one incorrect, and we are in-
terested in the probability that the majority opinion is correct.
Our main question is whether there exist delegation mecha-
nisms that are guaranteed to outperform direct voting, in the
sense of being always at least as likely, and sometimes more
likely, to make a correct decision. Even though we assume
that voters can only delegate their votes to better-informed
voters, we show that local delegation mechanisms, which
only take the local neighborhood of each voter as input (and,
arguably, capture the spirit of liquid democracy), cannot pro-
vide the foregoing guarantee. By contrast, we design a non-
local delegation mechanism that does provably outperform
direct voting under mild assumptions about voters.

1 Introduction

Liquid democracy is a modern approach to voting in which
voters can either vote directly or delegate their vote to other
voters. In contrast to the classic proxy voting paradigm
(Miller 1969), the key innovation underlying liquid democ-
racy is that proxies — who were selected by voters to vote
on their behalf — may delegate their own vote to a proxy,
and, in doing so, further delegate all the votes entrusted to
them. Put another way (to justify the liquid metaphor), votes
may freely flow through the directed delegation graph until
they reach a sink, that is, a vertex with outdegree 0. When the
election takes place, each voter who did not delegate his vote
is weighted by the total number of votes delegated to him,
including his own. In recent years, this approach has been
implemented and used on a large scale, notably by eclectic
political parties such as the German Pirate Party (Piraten-
partei) and Sweden’s Demoex (short for Democracy Exper-
iment).

One reason for the success of liquid democracy is that it
is seen as a practical compromise between direct democ-
racy (voters vote directly on every issue) and representative
democracy, and, in a sense, is the best of both worlds. Direct
democracy is particularly problematic, as nicely articulated
by Green-Armytage (2015):

“Even if it were possible for every citizen to learn ev-
erything they could possibly know about every politi-
cal issue, people who did this would be able to do little
else, and massive amounts of time would be wasted in
duplicated effort. Or, if every citizen voted but most
people did not take the time to learn about the issues,
the results would be highly random and/or highly sen-
sitive to overly simplistic public relations campaigns.”

By contrast, under liquid democracy, voters who did not
invest an effort to learn about the issue at hand (presum-
ably, most voters) would ideally delegate their votes to well-
informed voters. This should intuitively lead to collective
decisions that are less random, and more likely to be cor-
rect, than those that would be made under direct democracy.

Our goal is to rigorously investigate the intuition that liquid
democracy “outperforms” direct democracy from an algo-
rithmic viewpoint. Indeed, we are interested in delegation
mechanisms, which decide how votes should be delegated
based on how relatively informed voters are, and possibly
even based on the structure of an underlying social network.
Our main research question is

... are there delegation mechanisms that are guaranteed
to yield more accurate decisions than direct voting?

Overview of the Model and Results

We focus on a (common) setting where there a decision is to
be made on a binary issue, i.e., one of two alternatives must
be selected (see Section 5 for a discussion of the case of
more than two alternatives). To model the idea of accuracy,
we assume that one alternative is correct, and the other is
incorrect. Each voter i has a competence level pi, which is
the probability he would vote correctly if he cast a ballot
himself.

Voters may delegate their votes to neighbors in a social net-
work, represented as a directed graph. At the heart of our
model is the assumption that voters may only delegate their
votes to strictly more competent neighbors (and, therefore,
there can be no delegation cycles). Specifically, we say that
voter i approves voter j if pj > pi + α, for a parameter
α ≥ 0; voters may only delegate to approved neighbors.
In defense of this strong assumption, we note that the first



of our two theorems — arguably the more interesting of the
two — is an impossibility result, so assuming that delegation
necessarily boosts accuracy only strengthens it.

As mentioned above, we are interested in studying dele-
gation mechanisms, which decide how votes are delegated
(possibly randomly), based on the underlying graph and the
approval relation between voters. We pay special attention
to local delegation mechanisms, which make delegation de-
cisions based only on the neighborhood of each voter. Local
mechanisms capture the spirit of liquid democracy in that
voters make independent delegation decisions based solely
on their own viewpoint, without guidance from a central
authority. By contrast, non-local mechanisms intuitively re-
quire a centralized algorithm that coordinates delegations.

Recall that our goal is to design delegation mechanisms that
are guaranteed to be more accurate than direct voting. To
this end, we define the gain of a mechanism with respect
to a given instance as the difference between the probability
that it makes a correct decision (when votes are delegated
and weighted majority voting is applied) and the probabil-
ity that direct voting makes a correct decision on the same
instance. The desired guarantee can be formalized via two
properties of mechanisms: positive gain (PG), which means
that there are some sufficiently large instances in which the
mechanism has positive gain that is bounded away from 0;
and do no harm (DNH), which requires that the loss (nega-
tive gain) of the mechanism goes to 0 as the number of voters
grows. These properties are both weak; in particular, PG is
a truly minimal requirement which, in a sense, mainly rules
out direct voting itself as a delegation mechanism.

In Section 3, we study local delegation mechanisms and es-
tablish an impossibility result: such mechanisms cannot sat-
isfy both PG and DNH. In a nutshell, the idea is that for
any local delegation mechanism that satisfies PG we can
construct an instance where few voters amass a large num-
ber of delegated votes, that is, delegation introduces signifi-
cant correlation between the votes. The instance is such that,
when the high-weight voters are incorrect, the weighted ma-
jority vote is incorrect; yet direct voting is very likely to lead
to a correct decision.

In Section 4, we show that non-local mechanisms can cir-
cumvent the foregoing impossibility. Specifically, we design
a delegation mechanism, GREEDYCAP, that satisfies the PG
and DNH properties under mild assumptions about voter
competencies. It does so by imposing a cap on the number
of votes that can be delegated to any particular voter, thereby
avoiding excessive correlation.

In conclusion, our work highlights the significance, and po-
tential dangers, of delegating many votes to few voters. Im-
portantly, there is evidence that this can happen in practice.
For example, Der Spiegel reported1 that one member of the
German Pirate Party, a linguistics professor at the University

1http://www.spiegel.de/international/germany/liquid-
democracy-web-platform-makes-professor-most-powerful-
pirate-a-818683.html

of Bamberg, amassed so much weight that his “vote was like
a decree.” Our results corroborate the intuition that this situ-
ation should be avoided.

Related Work

There is a significant body of work in political science
on delegative democracy and proxy voting (Miller 1969;
Tullock 1992; Alger 2006). But, to the best of our knowl-
edge, there are only two papers that provide theoretical anal-
yses of liquid democracy. The first is the aforementioned
paper by Green-Armytage (2015). He considers a setting
where voters’ positions on an issue are represented as points
on the real line and votes are noisy estimates of those posi-
tions. Green-Armytage defines the expressive loss of a voter
as the squared distance between his vote and his position
and proves that delegation (even transitive delegation) can
only decrease the expressive loss in his model. He also de-
fines systematic loss as the squared distance between the me-
dian vote and the median position, but discusses this type of
loss only informally (interestingly, he does explicitly men-
tion that correlation can lead to systematic loss in his model).

The second paper is by Christoff and Grossi (2017). They
introduce a model of liquid democracy based on the theory
of binary aggregation (i.e., their model has a mathematical
logic flavor). Their results focus on two problems: the pos-
sibility of delegation cycles, and logical inconsistencies that
can arise when opinions on interdependent propositions are
expressed through proxies. Both are nonissues in our model
(although the need to avoid cycles is certainly a concern in
practice).

Further afield, there is a rich body of work in computa-
tional social choice (Brandt et al. 2016) on the aggrega-
tion of objective opinions (Conitzer and Sandholm 2005;
Conitzer, Rognlie, and Xia 2009; Elkind, Faliszewski, and
Slinko 2010; Elkind and Shah 2014; Xia, Conitzer, and
Lang 2010; Xia and Conitzer 2011; Lu and Boutilier 2011;
Procaccia, Reddi, and Shah 2012; Azari Soufiani, Parkes,
and Xia 2012; 2013; 2014; Mao, Procaccia, and Chen 2013;
Caragiannis, Procaccia, and Shah 2014; 2016; Procaccia,
Shah, and Zick 2016; Xia 2016). As in our work, the high-
level goal is to pinpoint the correct outcome based on noisy
votes. However, previous work in this area does not encom-
pass any notion of vote delegation.

2 The Model

We represent an instance of our problem using a directed,
labeled graph G = (V,E, ~p). V = {1, . . . , n} is a set of
n voters, also referred to as vertices (we use the two terms
interchangeably). E represents a (directed) social network
in which the existence of an edge (i, j) means that voter i
knows (of) voter j.

We assume that the voters vote on a binary issue; there is
a correct alternative and an incorrect alternative. Each voter
i ∈ V is labeled by his competence level pi. This is the



probability that i has the correct opinion about the issue at
hand, i.e., the probability that i will vote correctly.

Our setting is also parameterized by α ∈ [0, 1). Given this
parameter and a labeled graph G = (V,E, ~p), we define
an approval relation between voters: i ∈ V approves j ∈
V if (i, j) ∈ E and pj > pi + α. In words, i approves
his neighbor j if the difference in their competence levels is
strictly greater than α. The strict inequality guarantees that
the approval relation is acyclic. Denote

AG(i) = {j ∈ V : i approves j}.

Delegation Mechanisms

The liquid democracy paradigm is implemented through a
delegation mechanism M , which takes as input a labeled
graph G, and outputs, for each voter i, a delegation proba-
bility distribution over AG(i)∪{i} that represents the prob-
ability that i will delegate his vote to each of his approved
neighbors, or to himself (which means he does not delegate
his vote).

To determine whether a delegation mechanism M makes a
correct decision on a labeled graph G = (V,E, ~p), we use
the following 4-step process (which is described in words to
avoid introducing notation that will not be used again):

1. Apply M to G.

2. Sample the probability distribution for each vertex to ob-
tain an acyclic delegation graph. Each sink i of the del-
egation graph (i.e., vertex with no outgoing edges) has
weight equal to the number of vertices with directed paths
to i, including i itself.

3. Each sink i votes for the correct alternative with proba-
bility pi, and for the incorrect alternative with probability
1− pi.

4. A decision is made based on the weighted majority vote.2

We denote the probability that the mechanism M makes
a correct decision on graph G via this 4-step process by
PM (G).

We are especially interested in a special class of delegation
mechanisms that we call local mechanisms. Intuitively, lo-
cal mechanisms capture the natural setting where each voter
makes an independent delegation decision without central
coordination. Formally, a local delegation mechanism is a
delegation mechanism such that the probability distribution
of each vertex i depends only on the neighborhood of i inG,
i.e., on {j ∈ V : (i, j) ∈ E}, and on AG(i), i.e., the sub-
set of these neighbors that are approved. For example, the
following delegation mechanisms are local:

• Voters do not delegate their votes. This direct voting
mechanism plays a special role in our model, and we de-
note it by D.

2Ties can be broken arbitrarily.

• Each voter delegates his vote to a random approved neigh-
bor, if he has any.

• Each voter delegates his vote to a random approved neigh-
bor, if he has approved neighbors but has even more non-
approved neighbors.

• Each voter delegates his vote deterministically to a single
approved neighbor, if he has any.3

Desiderata

Recall that we are interested in comparing the likelihood
of making correct decisions via delegative voting with that
of direct voting. To this end, define the gain of delegation
mechanism M on labeled graph G as

gain(M,G) = PM (G)− PD(G).

We would like to design delegation mechanisms that have
positive gain (bounded away from zero) in some situations,
and which never lose significantly to direct voting. Formally,
we are interested in the following two desirable axioms:

• A mechanism M satisfies the positive gain (PG) property
if there exist γ > 0, n0 ∈ N such that for all n ≥ n0 there
exists a graph Gn on n vertices such that gain(M,Gn) ≥
γ.

• A mechanismM satisfies the do no harm (DNH) property
if for all ε > 0, there exists n1 ∈ N such that for all graphs
Gn on n ≥ n1 vertices, gain(M,Gn) ≥ −ε.

The choice of quantifiers here is of great significance. PG
asks for the existence of (large enough) instances where the
gain is at least γ, for a constant γ. By contrast, DNH essen-
tially requires that any loss would go to 0 as the size of the
graph goes to infinity. That is, there may certainly be small
instances where delegative voting loses out to direct voting,
but that should not be the case in the large.

3 Impossibility for Local Mechanisms

In our model, we make the strong assumption that voters can
only delegate their vote to other voters who are more com-
petent than they are, and, in particular, delegation chains can
significantly boost the competence of any particular vote.
Under this assumption, it seems natural to expect that del-
egative voting will always do at least as well as direct vot-
ing in every situation, and strictly better in some situations.
This should intuitively be true under local mechanisms, say,
when each voter delegates his vote to an arbitrary approved
neighbor (if he has any). The following example helps build
intuition for what can go wrong.

3There is a technical subtlety here: To implement such a local
mechanism, vertices cannot be anonymous, so we require an or-
dering over the approved neighbors of each vertex, e.g., the one
induced by the indices. We do not belabor this point but note that it
is not an issue for our technical results.



Example 1. Consider the labeled graph Gn = (V,E, ~p)
over n vertices, where E = {(i, 1) : i ∈ V \ {1}}, i.e.,
G is a star with 1 at the center. Moreover, p1 = 4/5, pi =
2/3 for all i ∈ V \ {1}, and α = 1/10. Then, as n grows
larger, PD(Gn) goes to 1 by the Law of Large Numbers,
or, equivalently, by the Condorcet Jury Theorem (Grofman,
Owen, and Feld 1983). By contrast, all leaves approve the
center, and a naı̈ve local delegation mechanism M would
delegate all their votes. In that case, the decision depends
only on the vote of the center, so PM (Gn) = 4/5 for all
n ∈ N, and gain(M,Gn) converges to −1/5. We conclude
that M violates the DNH property.

One might hope that there are “smarter” local delegation
mechanisms, that, say, recognize that when a voter only has
one approved neighbor, his vote should not be delegated.
However, our first result shows that this is not the case: local
delegation mechanisms cannot even satisfy the two minimal
requirements of PG and DNH.

Theorem 1. For any α0 ∈ [0, 1), there is no local mecha-
nism that satisfies the PG and DNH properties.

The first step in the proof is better understanding the way
in which local mechanisms are constrained. This is captured
by the following lemma.

Lemma 1. Let M be a local mechanism. Then M satisfies
the PG property only if there exist k,m, ρ > 0 such that, if a
voter approves of exactly k of hism neighbors, then the total
probability of delegation to any of these approved neighbors
is exactly ρ.

Proof. Suppose that PG holds. Let γ > 0 and fix a labeled
graph G such that gain(M,G) ≥ γ > 0. In order for this
to be the case, there must exist some vertex i that delegates
with positive probability ρ. Let k be the number of neigh-
bors in G that i approves, and let m be his total number of
neighbors in G; this yields the desired tuple (k,m, ρ).

The crux of the theorem’s proof is the construction of a
graph that, from the local viewpoint of many of the vertices,
looks like the neighborhood prescribed by Lemma 1. Specif-
ically, a k-center m-uniform star consists of vertices called
leaves that are each connected to k central vertices (the cen-
ters) as well as m − k other leaves. Each leaf vertex has
competence level p`, and each center vertex has competence
level pc, such that pc > p` +α. We set the value of k and m
to be the values whose existence is guaranteed by Lemma 1,
which means that the construction of a k-center m-uniform
star satisfies the property that each leaf delegates to some
center vertex with probability ρ. Throughout the proof, we
will let nc = k be the number of centers, and n` will denote
the number of leaves.

At a high level, we show that the loss of any local mecha-
nism can approach (1− pc)k, which is constant given k. We
do this by constructing a graph that consists of a k-center
m-uniform star with an independent disconnected compo-
nent consisting of nd vertices of competence level pd. We
set the parameters so that the direct voting mechanism D

Figure 1: Graph G for n` = 6 leaves (shown in red), nc =
3 centers (shown in blue), nd = 24 disconnected vertices
(shown in yellow), and m = 4.

decides correctly with high probability. By contrast, under
the local delegation mechanism M , enough leaves delegate
their votes to the centers so that if all centers were to vote
incorrectly, which happens with probability (1 − pc)k, then
M would decide incorrectly. While the basic idea is simple
enough, the formal construction is quite delicate, as many
different parameters must be perfectly balanced.

Proof of Theorem 1. LetM be a local mechanism that satis-
fies PG. By Lemma 1, there must exist at least one (k,m, ρ)
tuple for M that satisfies the lemma’s conclusion. For any
n1 prescribed by DNH and any α0, we can construct a graph
Gn such that DNH does not hold.

Let G be a graph of size n = nc + n` + nd that consists
of a k-center m-uniform star and a disconnected component
containing nd disconnected points (see Figure 1). Each cen-
ter has competence level pc, each leaf in the star has compe-
tence level p`, and each point in the disconnected component
has competence level pd. Given (k,m, ρ), n1, and α0, note
that the following constraints must hold.

n` ≥ m− nc (1)
n = n` + nc + nd ≥ n1 (2)
pc > p` + α0 (3)

We will prove that the following explicit construction vio-
lates DNH for any input of (k,m, ρ), n1, and α = α0 + ε′

for ε′ = 1−α0

2 > 0, as δ → 0.

nc = k (4)



n` =
n1m

αδ
(5)

nd = C1
n1m

αδ
(6)

C1 =

(
( p`ρσ n`−p`

√
n`)

2

)2

− nc

n`
− 1 (7)

σ =

√
−

ln
(
δ
2

)
2

(8)

pc =
1 + α

2
(9)

pl =
1− α

2
(10)

pd ∈
[(

n/2− n`p`
nd

)
+
σ
√
n

nd
, (11)(

n/2− n`p`
nd

)
+

(n`ρ− τ)p` − σ
√
n

nd

]
Note that we define τ in (12) below. The following claim,
whose proof is relegated to Appendix A, asserts that the con-
struction is feasible.

Claim 1. C1 > 0 and the range of values for pd in (11) is
nonempty.

Because α, δ ∈ (0, 1) and C1 > 0, the value of n` in (5) is
greater than both n1 andm, hence constraints (1) and (2) are
immediately satisfied. Moreover, constraint (3) is satisfied
by (9) and (10).

Turning to the proof that DNH is violated, let S, Z, and W
be the random variables corresponding to the number of cor-
rect votes under D, the number of delegated votes under M ,
and the number of non-delegated correct votes underM . Ad-
ditionally, let ε, τ , and ξ be as follows.

ε =

√
−
(
ln δ

2

)
n

2
,

τ =

√
−
(
ln δ

2

)
n`

2
, and (12)

ξ =

√
−
(
ln δ

2

)
(n− nc − (ρn` − τ))

2
.

Our goal is to bound the expectations of S, Z, and W . First,
we examine E[S]. We would like to show that

E[S] ≥ n/2 + ε. (13)

Expanding out the expected value, this is equivalent to

pcnc + p`n` + pdnd ≥ n/2 + ε.

From (11), we have

pd ≥
n/2− p`n` + ε

nd
,

so it is sufficient to show that

pcnc + p`n` + nd

(
n/2− p`n` + ε

nd

)
≥ n/2 + ε,

and simplifying results in pcnc ≥ 0. This is true by Equa-
tion (9), because α and k are both constrained to be strictly
positive.

Next, we examine E[Z]. We would like to show that
E[Z] = n`ρ. (14)

This is trivial to see, as Z is a sum of n` Bernoulli random
variables with “success” probability ρ.

Finally, we examine the “typical case” overW , or E[W |Z =
v] for all integers v ∈ [n`ρ − τ, n`ρ + τ ]. Intuitively,
this is examining the number of correct votes cast by still-
independent vertices after “enough” leaf vertices have dele-
gated their votes. If these votes do not make up a majority,
then all centers voting incorrectly will cause the entire graph
to vote incorrectly. We would like to show that

E[W |Z = v] ≤ n/2− ξ. (15)
for all integers v ∈ [n`ρ − τ, n`ρ + τ ]. Conditionally on
Z being in the prescribed range above, we see that in the
worst case, Z = n`ρ−τ , meaning the fewest possible voters
delegate under this assumption. Given this, we would like to
show that

pdnd + p`(n` − (ρn` − τ)) ≤ n/2− ξ.
From Equation (11) we have

pd ≤
n/2− p`n` + (n`ρ− τ)p` − ξ

nd
,

which yields(
n/2− p`n` + (n`ρ− τ)p` − ξ

nd

)
nd + p`(n` − (ρn` − τ))

≤ n/2− ξ.
Simplifying results in 0 ≤ 0 — a tautology. This establishes
Equation (15).

We now wish to bound the probability of S, Z, and W de-
viating by too much. We use Hoeffding’s inequality, which
states that given n independent Bernoulli random variables
Xi ∈ [0, 1] and X =

∑
iXi, the following concentration

bound holds:

Pr [|X − E[X]| ≥ ε] ≤ 2 exp

(
−2ε2

n

)
. (16)

First, we examine S. From (16) and a straightforward sub-
stitution for ε, we obtain

Pr (|S − E[S]| ≥ ε) ≤ 2 exp

(
−2ε2

n

)

= 2 exp

−
2

[√
− (ln δ

2 )n
2

]2
n


= δ.

(17)



Likewise, forZ, from (16) and a straightforward substitution
for τ , we obtain

Pr [|Z − E[Z]| ≥ τ ] ≤ 2 exp

(
−2τ2

n`

)

= 2 exp

−
2

[√
− (ln δ

2 )n`
2

]2
n`


= δ.

(18)

Finally, for W , we are interested in upper-bounding

Pr[|W − E[W |Z = v]| ≥ ξ | Z = v],

for every integer v ∈ [n`ρ−τ, n`ρ+τ ]. As before, we apply
Equation (16), and, as it turns out, we can derive an upper
bound when Z = n`ρ − τ . Therefore, we obtain that for
every v ∈ [n`ρ− τ, n`ρ+ τ ],

Pr [|W − E[W |Z = v]| ≥ ξ | Z = v]

≤ 2 exp

(
−2ξ2

n− nc − (ρn` − τ)

)

= 2 exp

−
2

[√
− (ln δ

2 )(n−nc−(ρn`−τ))
2

]2
n− nc − (ρn` − τ)


= δ.

(19)

From the above, we see that

Pr[S > n/2] ≥ 1− δ, (by (13) and (17))
Pr[Z ∈ (n`ρ− τ, n`ρ+ τ)] ≥ 1− δ, (by (14) and (18))

Pr[W < n/2 | Z = v] ≥ 1− δ, (by (15) and (19))

where the last inequality holds for all integers v ∈ [n`ρ −
τ, n`ρ+ τ ].

Therefore, the lower bound on the probability ofD deciding
correctly is PD(G) ≥ 1− δ. We can lower-bound the prob-
ability of M deciding incorrectly in order to upper-bound
PM (G). We slightly overload notation and let M be the
event that M decides correctly, and ¬M be the event that
M decides incorrectly. Moreover, denote by V the event that
Z ∈ [n`ρ− τ, n`ρ+ τ ]. By definition, we have

Pr[¬M ] = Pr[¬M |V ] Pr[V ] + Pr[¬M |¬V ] Pr[¬V ],

and because probabilities cannot be negative,

Pr[¬M ] ≥ Pr[¬M |V ] Pr[V ].

Now, because Pr[V ] ≥ 1− δ,

Pr[¬M ] ≥ Pr[¬M |V ](1− δ).

Furthermore, we know that Pr[¬M |V ] is also lower-
bounded by (1 − pc)

nc(1 − δ) because one setting under

whichM decides incorrectly is exactly when all centers vote
incorrectly and W < n/2. It follows that

Pr[¬M ] ≥ (1− pc)nc(1− δ)(1− δ).

Therefore, taking the complement, we have an upper bound
on the probability of M voting correctly of

Pr[M ] ≤ 1− (1− pc)nc(1− δ)2,

and the total loss can be lower-bounded by

(1−δ)− (1− (1−pc)nc(1−δ)2) = (1−pc)nc(1−δ)2−δ.

As δ → 0, this tends to (1 − pc)
nc = (1 − pc)

k, which
is constant and bounded away from 0. We conclude that M
violates the DNH property.

4 Possibility for Non-Local Mechanisms

The main idea underlying Theorem 1 is that liquid democ-
racy can correlate the votes to the point where the mistakes
of a few popular voters tip the scales in the wrong direc-
tion. As we show in the theorem’s proof, this is unavoid-
able under local delegation mechanisms, which, intuitively,
cannot identify situations in which certain voters amass a
large number of votes. However, non-local delegation mech-
anisms can circumvent this issue. Indeed, consider the fol-
lowing delegation mechanism.

input: labeled graph G, cap C : N→ N
1: V ′ ← V
2: while V ′ 6= ∅ do
3: let i ∈ argmaxj∈V ′ |AG(j) ∩ V ′|
4: J ← AG(i) ∩ V ′
5: if |J | ≤ C(n)− 1 then
6: J ′ ← J
7: else
8: let J ′ ⊆ J such that |J ′| = C(n)− 1
9: end if

10: vertices in J ′ delegate to i
11: V ′ ← V ′ \ ({i} ∪ {J ′})
12: end while

Algorithm 1: GREEDYCAP

In words, the mechanism GREEDYCAP, given as Algo-
rithm 1, receives as input a labeled graph G, and a cap C. It
iteratively selects a voter with maximum approvals, and del-
egates votes to him, so that no more than C(n)− 1 votes are
delegated to a single voter (that is, no voter can have weight
more than C(n)). All voters involved in the current iteration
are then eliminated from further consideration, which is why
delegations under this mechanism are only 1-hop.

It is obvious that GREEDYCAP satisfies the PG property.
However, although it seems at first glance that it should sat-
isfy DNH as well (as it solves the excessive correlation prob-
lem), the following example shows that, without further as-
sumptions, it does not.



Example 2. Assume for ease of exposition that α < 1/3.
For any odd n = 2k + 1, consider the labeled graph Gn =
(V,E, ~p) on n vertices, defined as follows: E = {(1, 2)}
(i.e., the only edge in the graph is from 1 to 2), p1 = 1/3,
p2 = 2/3, there are k vertices with pi = 1, and k − 1 ver-
tices with pi = 0. Even if C(n) ≡ 2, GREEDYCAP would
delegate the vote of voter 1 to 2. Therefore, the mechanism
decides correctly if and only if 2 votes correctly, which hap-
pens with probability 2/3. By contrast, under direct voting,
it is enough for either 1 or 2 to vote correctly, which happens
with probability 7/9. It follows that the loss of GREEDYCAP
is 1/9 — a constant. We conclude that GREEDYCAP violates
DNH.

The reason the example works is that the outcome com-
pletely depends on voters 1 and 2, as the others vote deter-
ministically (competence level 0 or 1). To avoid this prob-
lem, we make the natural assumption that competence lev-
els are bounded away from 0 and 1, i.e., voters are never
horribly misinformed or perfectly informed. It turns out
that this additional assumption is sufficient to guarantee that
GREEDYCAP satisfies the DNH property.

Theorem 2. Assume that there exists β ∈ (0, 1/2) such that
all competence levels are in [β, 1 − β]. Then for any α ∈
(0, 1 − 2β), GREEDYCAP with cap C : N → N such that
C(n) ∈ ω(1) and C(n) ∈ o(

√
log n) satisfies the PG and

DNH properties.

The theorem’s rather technical proof is relegated to Ap-
pendix B. Here we provide a proof sketch.

The PG property is rather obvious. It suffices to construct a
family of examples over which the property is satisfied. Let
the underlying graph G consist of pairs of nodes with one
competent voter with competence level 1 − β, and one in-
competent voter with competence level β, where there is an
edge from every incompetent voter to the connected compe-
tent voter. Under the direct setting, it is clear that PD = 1/2.
However, under GREEDYCAP, all incompetent voters dele-
gate to competent voters, resulting in n/2 independent vot-
ers who each have competence 1−β and weight exactly two.
By the Condorcet Jury Theorem (Grofman, Owen, and Feld
1983), the probability of success approaches 1.

For the DNH property, we denote the number of correct
votes under direct voting and GREEDYCAP byXD andXM ,
respectively, and consider two cases.

1. |E[XD]− n
2 | >

n
logn .

2. |E[XD]− n
2 | ≤

n
logn .

In Case 1, the direct voting mechanism has mean far away
from n/2. When E[XD] < n/2−n/ log n, we can show that
PD goes to 0 as n goes to infinity. This means that DNH is
satisfied for any value of PM . In the case where E[XD] >
n/2 +n/ log n, we can show that PM goes to 1 as n goes to
infinity, which means that DNH is satisfied for any value of
PD.

In Case 2, the direct voting setting has mean close to n/2.
From here, we consider two subcases.

1. The number of voters who delegate is greater than
n/g(n), where g(n) ∈ o(log n) and g(n) ∈ ω(C(n)2)
— hence the upper bound on C(n).

2. The number of voters who delegate is at most n/g(n).

In Subcase 1, because a relatively large fraction of voters
delegate their votes to more competent neighbors, E[XM ]−
E[XD] is large enough to offset the simultaneous increase
in the variance of XM , and, in the limit, PM goes to 1. In
Subcase 2, we again have E[XM ] ≥ E[XD] due to delega-
tion. Additionally, because so few voters delegate, the ratio
of the variance of XM and that of XD converges to 1 as n
approaches infinity, which means that (in the worst case) the
difference between PD and PM converges to 0.

5 Discussion
We wrap up with a discussion of two central issues.

How realistic is the model? We revisit an important point,
which has already come up several times, including in Sec-
tion 1. Our assumption that voters only delegate their votes
to more competent voters is clearly restrictive. But we feel it
allows us, in a sense, to distill the essence of liquid democ-
racy (e.g., by avoiding complications that have to do with
delegation cycles) and focus on central issues such as vote
correlation. Moreover, as noted earlier, our negative result
— Theorem 1 — is especially powerful in this model, that
is, it holds despite the foregoing assumption. And the pos-
itive result — Theorem 2 — should (informally speaking)
still hold in a relaxed model where voters may delegate their
votes to less competent voters, as long as the average com-
petence level increases by a constant due to delegation. We
view this as a realistic assumption.

Beyond binary issues. In our model, there are only two al-
ternatives, one correct and one incorrect. While this setting
is of practical importance, it is natural to ask whether our
results extend to the case of three or more alternatives. How-
ever, there are several obstacles.

First, a representation of the ground truth, and of voters’ per-
ceptions thereof, is required. A popular option is the Mal-
lows (1957) Model, where the ground truth is a ranking of
the alternatives, and the probability that a voter cast a given
ranking as his vote decreases exponentially with its “dis-
tance” from the ground truth, in a way that depends on a
(competence) parameter φi. This model coincides with ours
(using a suitable transformation between φi and pi) when
the number of alternatives is 2.

Second, we have assumed that votes are aggregated using
the majority rule, which is the only reasonable voting rule
when there are two alternatives. By contrast, when choos-
ing among three or more alternatives, there are many voting
rules one can use.

To conclude, any attempt to extend our model and results
beyond the case of two alternatives would have to address
not only technical challenges, but also conceptual ones.
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Appendix

A Proof of Claim 1

We show that our value of C1 results in the existence of pd
from above by relaxing the upper and lower bounds on pd.

From above, we have

C1 =

(
( p`ρσ n`−p`

√
n`)

2

)2

− k

n`
− 1

and rearranging terms yields

2
√

(C1 + 1)n` + k =
p`ρ

σ
n` − p`

√
n`.



Now, note that nd = C1n` and therefore (C1 + 1)n` + k =
nd + n` + k = n. Additionally, note that

√
n` = τ

σ . Substi-
tuting this in, we have

2
√
n =

p`ρn` − p`τ
σ

and therefore

σ
√
n = p`(ρn` − τ)− σ

√
n. (20)

Now, we note that σ
√
n− kpc < σ

√
n and

p`(ρn`−τ)−σ
√
n < (n`ρ−τ)p`−σ

√
n− k − (n`ρ− τ),

so from (20), we can now conclude that

σ
√
n− kpc < σ

√
n = p`(ρn` − τ)− σ

√
n

< (n`ρ− τ)p` − σ
√
n− k − (n`ρ− τ),

which means

pd ∈
[(

n/2− n`p`
c

)
+
σ
√
n− kpc
c

,(
n/2− n`p`

c

)
+

(n`ρ− τ)p` − σ
√
n− k − (n`ρ− τ)
c

]
has a solution, as desired, and our value for pd is admissible.

Lastly, we have to show that this value of C1 is itself admis-
sible; i.e., that the following holds:(

( p`ρσ n`−p`
√
n`)

2

)2

− k

n`
− 1 > 0.

Rearranging and expanding, we obtain
p`n`ρ

σ
− p`
√
n` ≥ 2

√
n` + k,

and squaring both sides yields(p`n`ρ
σ

)2
+ (p`)

2n` − 2
(p`)

2ρ(n`)
3/2

σ
≥ 4(n` + k).

Now, substituting in our value for n`, we obtain[(p`ρ
σ

)(n0m
αδ

)]2
+ (p`)

2
(n0m
αδ

)
− 2(p`)

2ρ

σ

(n0m
αδ

)3/2
− 4

(n0m
αδ

)
− 4k

≥ 0.

As δ → 0, this becomes dominated by the highest-order 1/δ
term, and therefore is always positive for any assignment to
the other variables because the rest of them are constrained
to be strictly positive.

B Proof of Theorem 2

We use the following classic result.

Lemma 2 (Lyapunov). Let {X1, . . . , Xn} be a set of inde-
pendent random variables, each with finite expected value
E[Xi] and variance Var[Xi]. Let s2n =

∑n
i=1 Var[Xi]. If,

for some δ > 0 the following condition holds, then the
sum

∑n
i=1

Xi−E[Xi]
sn

converges to a standard normal ran-
dom variable as n goes to∞:

lim
n→∞

1

s2+δn

n∑
i=1

E
[
|Xi − E[Xi]|2+δ

]
= 0.

The next lemma adapts the previous one for our setting.

Lemma 3. Let S be a random variable such that S = X1 +
· · ·+Xt, where each Xi = wiVi for wi ∈ Z+, and each Vi
is an independent Bernoulli random variable with success
probability pi ∈ [β, 1 − β] for β ∈ (0, 1/2). Furthermore,∑t
i=1 wi = n, n/C(n) ≤ t ≤ n, and each wi ≤ C(n),

where C(n) ∈ o(n1/3). Then E[S] converges to a normal
distribution.

Proof. To use Lemma 2, let δ = 1; we would like to show
that

lim
t→∞

∑t
i=1 E

[
|Xi − E[Xi]|3

]
s3t

= 0.

From above, we know that s3t =
(∑t

i=1 Var[Xi]
)3/2

and

Var[Xi] = w2
i Var[Vi] = w2

i p(1−p). Plugging this in yields

lim
t→∞

∑t
i=1 E

[
|Xi − E[Xi]|3

]
(∑t

i=1 w
2
i pi(1− pi)

)3/2 .
Additionally,

E
[
|Xi − E[Xi]|3

]
= w3

i

(
pi(1− pi)3 + (1− pi)(| − pi|)3

)
,

which simplifies to w3
i pi(1− pi)(1− 2pi + 2p2i ). Therefore,

we have

lim
t→∞

∑t
i=1 w

3
i pi(1− pi)(1− 2(pi − p2i ))(∑t
i=1 w

2
i pi(1− pi)

)3/2
and because pi ∈ [β, 1−β] with β ∈ (0, 1/2), we know that
pi > p2i and so 1 − 2(pi − p2i ) < 1. Therefore, for all valid
pi, pi(1− pi)(1− 2(pi− p2i )) < pi(1− pi), and we can see
that

lim
t→∞

∑t
i=1 w

3
i pi(1− pi)(1− 2(pi − p2i ))(∑t
i=1 w

2
i pi(1− pi)

)3/2



< lim
t→∞

∑t
i=1 w

3
i pi(1− pi)(∑t

i=1 w
2
i pi(1− pi)

)3/2 .
Furthermore, we know that each wi is an integer less than or
equal to C(n). Therefore, we have that

lim
t→∞

∑t
i=1 w

3
i pi(1− pi)(∑t

i=1 w
2
i pi(1− pi)

)3/2 ≤ lim
t→∞

C(n)
∑t
i=1 w

2
i pi(1− pi)(∑t

i=1 w
2
i pi(1− pi)

)3/2
= lim
t→∞

C(n)(∑t
i=1 wipi(1− pi)

)1/2 ,
which goes to 0 when

(∑t
i=1 wipi(1− pi)

)1/2
grows

asymptotically more quickly than C(n) as t (and therefore
n) grows. Indeed, note that because pi ∈ [β, 1 − β] and
wi ∈ Z+, we know that

wipi(1− pi) ≥ pi(1− pi) ≥ β(1− β).

Therefore,(
t∑
i=1

wipi(1− pi)

)1/2

≥

(
t∑
i=1

pi(1− pi)

)1/2

≥ (β(1− β)t)
1/2

≥
(
β(1− β)

n

C(n)

)1/2

∈ ω(C(n)),

where the third transition follows from t ≥ n/C(n), and the
last from C(n) ∈ o(n1/3). This concludes the proof.

We also require the following simple lemma.

Lemma 4. Given a normally distributed variable X ∼
N (E[X],Var[X]) with E[x] ∈ [µmin, µmax] and Var[X] ∈
[σ2
min, σ

2
max], then the following is true.

Case 1: if µmax > k :

Pr[X > k] ≤ Pr[Y ∼ N (µmax, σ
2
min) > k]

Pr[X > k] ≥ Pr[Y ∼ N (µmin, σ
2
max) > k]

Case 2: if µmax < k :

Pr[X > k] ≤ Pr[Y ∼ N (µmax, σ
2
max) > k]

Pr[X > k] ≥ Pr[Y ∼ N (µmin, σ
2
min) > k]

Proof. For both upper bounds, we want to minimize the
value of Φ

(
k−E[X]
Var[X]

)
. Because Φ is monotonically increas-

ing, this is equivalent to minimizing the value of k−E[X]
Var[X] . It

is clear that k − µmax < k − µmin. Now, if k − µmax < 0,
then

k − µmax
σmin

<
k − µmax
σmax

.

However, if k − µmax > 0, then
k − µmax
σmax

<
k − µmax
σmin

.

For both lower bounds, we want to maximize the value of
Φ
(
k−E[X]
Var[X]

)
. Because Φ is monotonically increasing, this

is equivalent to maximizing the value of k−E[X]
Var[X] . As in the

above case, it is clear that k − µmin > k − µmax. Now, if
k − µmin < 0, then

k − µmin
σmax

>
k − µmin
σmin

.

However, if k − µmin > 0, then

k − µmin
σmin

>
k − µmin
σmax

.

Finally, by definition, Erf (∞) = 1 and Erf (−∞) = −1,
where Erf (·) denotes the (Gauss) error function. We will use
this fact repeatedly throughout the proof of the theorem.

Proof of Theorem 2. Let us define two random variables,
XD and XM , where XD denotes the number of correct
votes under the direct voting mechanism D, and XM repre-
sents the number of correct votes under GREEDYCAP. We
are interested in comparing PD = Pr[XD > n/2] and
PM = Pr[XM > n/2].

Note that XD =
∑n
i=1 Vi, where Vi is the Bernoulli vari-

able representing the vote of voter i. Similarly, XM =∑t
i=1 wiVi, where wi ∈ Z+ is the total weight accumu-

lated by each voter who actually casts a vote. Note that
each voter cannot accumulate weight greater than C(n), and
therefore wi ≤ C(n) and t ≥ n/C(n). By Lemma 3, we
can treat both XD and XM as being normally distributed,
which means we can use the following formulas.

PD =

∫ n

n/2

1√
2πVar[XD]

exp

(
−(x− E[XD])2

2 Var[XD]

)
dx

(21)

PM =

∫ n

n/2

1√
2πVar[XM ]

exp

(
−(x− E[XM ])2

2 Var[XM ]

)
dx

(22)

Note that, from above, the PG property means that there ex-
ists ε such that PM − PD > ε for at least one graph Gn on
n vertices for all suitably large n. Similarly, the DNH prop-
erty corresponds to PD − PM < ε for all graphs Gn on n
vertices for suitably large n and all values of ε. We now that
these two properties hold.

For the PG property, we construct a simple family of exam-
ples where the property is satisfied. Let the social graph G
be composed of pairs of nodes with one competent voter and
one incompetent voter with an edge pointing to the compe-
tent voter. The competent voters have competence 1−β and
the incompetent voters have competence β. If the voters vote



independently, the symmetry between the competent and in-
competent voters makes it clear that PD = 1/2. Under Al-
gorithm 1, the incompetent voters all delegate to the com-
petent voters. We now have n

2 independent voters who each
have one vote of weight two and competence 1 − β. By the
Condorcet Jury Theorem (Grofman, Owen, and Feld 1983),
it follows that PM approaches 1.

In the remainder of the proof, therefore, we focus on estab-
lishing the DNH property. We first show that

Var[XD] ∈ [β(1− β)n, n/4]. (23)

Indeed, XD =
∑n
i=1 Vi, where Vi is the Bernoulli ran-

dom variable representing the vote of voter i. In particular,
Vi ∼ Bernoulli(pi), where pi ∈ [β, 1 − β] is the compe-
tence level of voter i. Because all voters vote independently,
Var[XD] =

∑n
i=1 Var[Vi], and

Var[Vi] = pi(1− pi) ∈ [β(1− β), (1/2)2].

This establishes Equation (23).

Now, let us separate the instances into two cases:

1. |E[XD]− n
2 | >

n
logn .

2. |E[XD]− n
2 | ≤

n
logn .

Case 1. In this case, we can give strong lower bounds on
both PD and PM .

Subcase 1: E[XD] < n/2 − n/ log n. By Equation (23),
Var[XD] ≤ n/4 < n. Because E[XD] < n/2, by Lemma 4
we have

PD <

∫ n

n
2

1√
2πn2

e
−(x−n2 + n

logn )
2

2n dx. (24)

This is equivalent to

PD <
1

2

(
Erf
(√

n(2 + log n)

2
√

2 log n

)
− Erf

( √
n√

2 log n

))
.

As n approaches infinity, both arguments go to infinity, and
therefore (as Erf (∞) = 1) PD approaches 0. This means
that, no matter the value of PM , DNH is satisfied.

Subcase 2: E[XD] > n/2 + n/ log n. We now examine the
maximum possible value of Var[XM ] =

∑n
i=1 w

2
i Var[Vi],

where wi is the total weight accumulated by voter i and,
again, Vi is the Bernoulli random variable representing the
vote of voter i. Note that here, unlike in Lemma 3, it is pos-
sible for wi to be 0. Additionally, Var[Vi] ∈ [β(1−β), 1/4],
and applying this yields Var[XM ] ≤ (1/4) ·

∑n
i=1 w

2
i . Be-

cause each voter can accumulate at most weight C(n), by
the convexity of x2, we can see that this is maximized when
the maximum number of voters have weight exactly C(n).
Therefore, we have

Var[XM ] ≤ 1

4
·
dn/C(n)e∑
i=1

C(n)2 < nC(n).

Because E[XD] > n/2, by Lemma 4 we have

PM >

∫ n

n
2

1√
2πnC(n)

e
−(x−n2 + n

logn )
2

2nC(n) dx. (25)

This simplifies to

PM >
1

2

(
Erf

( √
n(logn− 2)

2
√

2C(n) logn

)
+ Erf

( √
n√

2C(n) logn

))
.

As n approaches infinity, both arguments go to infinity, and
PM approaches 1. Therefore, no matter what the value of
PD, DNH is satisfied.

Case 2. In this case, we split the argument into two further
subcases:

1. The number of voters who delegate is greater than
n/g(n), where g(n) is o(log n) and ω(C(n)2).

2. The number of voters who delegate is less or equal to
n/g(n).

Subcase 1: Due to delegation, we have E[XM ] − E[XD] ≥
αn/g(n). We can now bound the mean by

E[XM ] ≥ n

2
− n

log n
+

nα

g(n)
.

Therefore, because g(n) = o(log n), E[XM ] > n/2 as n in-
creases. As before, we also know that Var[XM ] is bounded
from above by nC(n), and therefore, by Lemma 4,

PM ≥
∫ n

n
2

1√
2πnC(n)

e
−(x−n2 − n

logn
− nα
g(n) )

2

2nC(n) dx. (26)

We would like to show that this integral goes to 1 as n goes
to infinity. This is equivalent to

1

2

Erf

(
n
2
− nα

g(n)
+ n

logn√
2nC(n)

)
− Erf

√n
(
− α
g(n)

+ 1
logn

)
√

2C(n)

 .

Note that as n goes to infinity, the first argument goes to
infinity and the second argument goes to negative infinity
when g(n) = o(log n). Therefore, PM goes to 1, satisfying
DNH.

Subcase 2: In this case, most voters remain independent. We
will argue that although the delegation does impact the vari-
ance, this impact will get arbitrarily small as n grows larger,
implying that the loss will get arbitrarily small.

Let us index the voters according to what happens in the
delegation scheme. Let the first n1 indexed voters repre-
sent those who remain independent and do not get delegated
a vote. Let the next n2 indexed voters be those who got
delegated at least one vote. Finally, the last n − n1 − n2
indexed voters are those who delegated their vote to an-
other voter. Based on our assumption above, we know that



limn→∞
n1

n = 1; most voters remain independent and unaf-
fected by the delegation scheme.

Additionally, note that the mean will be slightly different
in the two schemes, but this to our advantage because the
mean will improve in the delegation scheme due to “uphill”
delegation.

Therefore, given

PD =

∫ n

n
2

1√
2πVar[XD]

e
−(x−E[XD ])2

2Var[XD ] dx

and

PM =

∫ n

n
2

1√
2πVar[XM ]

e
−(x−E[XM ])2

2Var[XM ] dx,

because E[XM ] ≥ E[XD], we can say that

PM ≥
∫ n

n
2

1√
2πVar[XM ]

e
−(x−E[XD ])2

2Var[XM ] dx.

Now, we have to relate Var[XM ] and Var[XD]. Ideally, we
want to show that they are multiplicatively close to each
other.

We can decompose the variance of Xd.

Var[XD] =

n1∑
i=1

pi(1− pi) +

n∑
i=n1+1

pi(1− pi).

Likewise, we can decompose the variance of XM .

Var[XM ] =

n1∑
i=1

pi(1− pi) +
n1+n2∑
i=n1+1

w2
i pi(1− pi) +

n∑
i=n1+n2+1

0.

Therefore, we have

Var[XM ]−Var[XD] =

n1+n2∑
i=n1+1

(w2
i − 1)pi(1− pi)

−
n∑

i=n1+n2+1

pi(1− pi)

≤
n1+n2∑
i=n1+1

(w2
i − 1)pi(1− pi)

≤ n2
4

(maxwi
2 − 1)

≤ 1

4
· n

g(n)
(C(n)2 − 1),

where the last inequality holds because wi ≤ C(n), and n2,
the number of voters who are delegated to, is at most the
number of voters who delegate, which is at most n/g(n) by
assumption.

This means that

Var[XM ] ≤ Var[XD] +
1

4
· n

g(n)
(C(n)2 − 1)

and therefore

Var[XM ]

Var[XD]
≤

Var[XD] + 1
4 ·

n
g(n) (C(n)2 − 1)

Var[XD]

= 1 +

n
g(n) (C(n)2 − 1)

4 Var[XD]
.

Now, note that by Equation (23),

Var[XD] ≥ nβ(1− β)

and therefore

Var[XM ] ≤ Var[XD]

(
1 +

n
g(n) (C(n)2 − 1)

4nβ(1− β)

)

= Var[XD]

(
1 +

1

g(n)
· C(n)2 − 1

4β(1− β)

)
.

Let

η =
1

g(n)
· C(n)2 − 1

4β(1− β)

and note that as n goes to infinity, η goes to 0 because we
chose g(n) to grow asymptotically faster than C(n)2.

Therefore, revisiting the original integrals, we have

PD =

∫ n

n
2

1√
2πVar[XD]

e
−(x−E[XD ])2

2Var[XD ] dx

and

PM ≥
∫ n

n
2

1√
2πVar[XD](1 + η)

e
−(x−E[XD ])2

2Var[XD ](1+η) dx.

Simplifying the above yields

PD =
1

2

(
Erf

(
n− E[XD]√
2Var[XD]

)
− Erf

(
n− 2E[XD]
2
√

2Var[XD]

))
(27)

and

PM ≥
1

2

(
Erf

(
n− E[XD]√

2 Var[XD](1 + η)

)

−Erf

(
n− 2E[XD]

2
√

2 Var[XD](1 + η)

)) (28)

Furthermore, again by Equation (23), we know that
Var[XD] ∈ [β(1 − β)n, n/4] and therefore

√
Var[XD] =√

cn, where c ∈ [β(1 − β), 1/4]. From this, note that as n
goes to infinity, the argument to the first error function in
each expression goes to infinity.

Let

h1(n) =
n− 2E[XD]

2
√

2 Var[XD]
(29)



be the argument to the second error function in (27), and let

h2(n) =
n− 2E[XD]

2
√

2 Var[XD](1 + η)
(30)

be the argument to the second error function in (28). As n
goes to infinity, note that the argument to (29) must go to one
of four states: infinity, negative infinity, zero, or a constant.
In the case that it goes to infinity, negative infinity, or zero,
the presence of the extra 1√

1+η
term in (30) does nothing

to change the sign of the arguments, and therefore they each
converge to the same state (infinity, negative infinity, or zero)
as n approaches infinity. When the argument to (29) goes to
a constant, note that as n goes to infinity, η goes to 0, and
therefore the two converge once again.

We conclude that (an upper bound on) the difference be-
tween PD and PM converges to 0, and hence DNH is sat-
isfied.


