
Sampling Winners in Ranked Choice Voting

Matthew Iceland1 , Anson Kahng1 and Joseph Saber1
1University of Rochester

miceland@u.rochester.edu, anson.kahng@rochester.edu, jsaber@ur.rochester.edu

Abstract
Ranked choice voting (RCV) is a voting rule that
iteratively eliminates least-popular candidates until
there is a single winner with a majority of all re-
maining votes. In this work, we explore three cen-
tral questions about predicting the outcome of RCV
on an election given a uniform sample of votes.
First, in theory, how poorly can RCV sampling pre-
dict RCV outcomes? Second, can we use insights
from the recently-proposed map of elections to bet-
ter predict RCV outcomes? Third, is RCV the best
rule to use on a sample to predict the outcome of
RCV in real-world elections? We find that although
RCV can do quite poorly in the worst case and it
may be better to use other rules to predict RCV
winners on synthetic data from the map of elec-
tions, RCV generally predicts itself well on real-
world data, further contributing to its appeal as a
theoretically-flawed but practicable voting process.
We further supplement our work by exploring the
effect of margin of victory (MoV) on sampling ac-
curacy.

1 Introduction
Democratic systems elicit and aggregate opinions from citi-
zens in order to make collective decisions. The most common
way in which they do this is through voting, in which citizens
provide structured feedback via ballots, which are then aggre-
gated via a social choice function, also called a voting rule, in
order to determine a winner.

One such rule is ranked choice voting (RCV), also known
as instant-runoff voting (IRV), single transferable vote (STV),
or preferential voting [Spencer et al., 2015]. RCV, or vari-
ants thereof, is used in political elections around the world,
including Australia, Ireland, New Zealand, and the United
States, for a mixture of federal, parliamentary, and local elec-
tions. In the United States in particular, RCV is championed
by activist groups like FairVote to replace the use of first-past-
the-post voting systems and is currently used by 11 million
residents: Alaska and Maine use RCV for federal and/or lo-
cal elections, and an additional 53 cities use RCV for local
elections, including New York City’s Democractic primary
for the mayoral election in 2021 [Horton and Thomas, 2023].

Despite significant activist support for RCV and increasing
adoption worldwide, RCV is known to have significant the-
oretical flaws, notably for being susceptible to monotonicity
paradoxes [Felsenthal and Tideman, 2013]. However, in prac-
tice, real-world elections do not often resemble worst-case
constructions or even synthetic elections generated from sta-
tistical cultures [Boehmer and Schaar, 2023], and RCV gen-
erally performs well [Graham-Squire and McCune, 2023].

One major concern expressed by activists pushing for more
widespread adoption of RCV is that of predicting the out-
comes of RCV elections from sampled votes, especially be-
cause RCV outcomes can change so drastically as new votes
are counted. Our goal is to study how to predict outcomes in
RCV elections from samples.

In this work, we aim to explore three central questions
about predicting RCV outcomes in sampled elections. First,
in the worst case over voting profiles, how poorly can RCV on
a sample predict the outcome of RCV on the entire election?
Second, in elections generated from well-studied statistical
cultures, does RCV predict itself better than other commonly-
used voting rules? And third, how well does RCV predict
itself on samples from real-world elections?

1.1 Our Contributions
We begin by examining the worst-case predictive perfor-
mance of RCV in theory. Surprisingly, we show that, in the-
ory, this performance seems to decrease as the sample size
grows: For samples of size 1, we obtain a tight bound of prob-
ability at least 1/2m−1 of making the correct decision,1 but
for samples consisting of all but a constant number of votes in
the election, we are able to create worst-case instances such
that the predictive performance of RCV drops to 0, i.e., using
RCV on the sample never yields the same result as evaluating
RCV on the entire profile. Additionally, we provide upper
bounds on the minimum sample size necessary to guarantee
a correct prediction in terms of the margin of victory of the
original election, where the margin of victory is defined as the
total number of votes that must be changed in order to change
the winner of the election.

Next, we examine the performance of a collection of nine
voting rules predicting RCV outcomes on synthetic elections
generated from a diverse set of statistical cultures from the

1Following convention, m is the number of alternatives.



map of elections [Szufa et al., 2020; Boehmer et al., 2021].
We observe that, especially on small sample sizes, RCV is
often not the best predictor of itself and that other rules, es-
pecially Copeland, are more reliable.

However, this observation does not hold as strongly for
real-world elections. On a range of elections sourced from
PrefLib, we find that, on average, RCV is generally the best
predictor of itself even on small sample sizes. This does not
hold for every individual election, but RCV even outperforms
two ensemble predictors that use the map of elections to po-
tentially boost performance.

1.2 Related Work
The paper most closely related to ours is that of Micha and
Shah [2020], which studies the worst- and average-case pre-
dictability of social welfare functions (SWFs), which return
rankings over candidates instead of winner(s). The authors
focus on positional scoring rules (PSRs) and demonstrate that
all PSRs except plurality and veto have zero worst-case pre-
dictability even with access to a sample of as many as n − 1
out of n votes. They also include an empirical section that
evaluates how well various SWFs can predict each other on
two synthetic vote distributions. In our work, we focus on
predicting social choice functions (SCFs), in particular RCV;
we also consider a significantly more diverse collection of
both synthetic and real-world data.

The synthetic data we use is directly inspired (and gen-
erated) by the map of elections [Faliszewski et al., 2019;
Szufa et al., 2020; Boehmer et al., 2021], which is a prin-
cipled approach to generating, organizing, and visualizing a
diverse set of statistical cultures from which to generate real-
istic election data.

Another related theoretical paper is that of Bhattacharyya
and Dey [2021], where the authors focus on predicting the
output of a SCF on an unknown profile through sampling
votes. However, the authors assume that votes are sampled
with replacement and that there is a margin of victory of at
least αn for some constant α. We do not make such assump-
tions in our worst-case results, and indeed our negative results
come in borderline cases. We do consider the margin of vic-
tory in RCV elections in our work on bounding the number of
samples necessary to make perfect predictions, which draws
on work by Cary [2011] and Dey and Narahari [2015].

Further afield, there is also significant theoretical and em-
pirical work on paradoxes in STV [Graham-Squire and Mc-
Cune, 2023; Tolbert and Kuznetsova, 2021; Donovan et al.,
2019], but this work does not focus on sampling.

2 Preliminaries
Let [n] := {1, . . . , n}. Let A = {a1, . . . , am} be a set of
m alternatives and N = [n] be a set of n voters. Let L(A)
be the set of all complete and incomplete rankings over A,
i.e., (partial) permutations of all alternatives. Each voter i ∈
N casts a vote σi ∈ L(A). The collection of all n votes is
the profile σ⃗ = (σ1, . . . , σn). We use the notation aj ≻i

ak to denote that voter i prefers aj to ak and drop the voter
subscript when the voter identity is clear.

We focus on social choice functions (SCFs) (here inter-
changeably referred to as voting rules), which are functions

f : L(A)n → A that, given an input profile, output a winner
of the election.2 Let sg(n) denote a sample taken uniformly
at random and without replacement from a complete profile
σ⃗ such that |sg(n)| = g(n) for a function g : N → N which,
given a number of voters n, returns a sample size in [n]. We
use sg(n) ∼ σ⃗ to denote this process of uniformly selecting
a sample sg(n) without replacement from σ⃗. When g(n) is
clear, we let s := sg(n) for brevity.

We also define the worst-case accuracy of a rule f predict-
ing a rule f ′ given a sampling function g and a maximum
number of alternatives m as

Af,f ′(g,m0) = inf p

s.t. ∀n0 ∈ N, ∃σ⃗ with |σ⃗| ≥ n0,m = m0

s.t. Pr
sg(n)∼σ⃗

(f(s) = f ′(σ⃗)) ≤ p.

Intuitively, this means that the minimum probability of f cor-
rectly predicting f ′ on a sample for profiles that consist of
exactly m0 alternatives as n becomes large. When f = f ′,
we let Af (g,m0) := Af,f ′(g,m0) for brevity.

2.1 Voting Rules
We define the voting rules in this paper, namely RCV, plu-
rality, Borda, harmonic, Copeland, Minimax, Bucklin, Plu-
rality Veto, and veto, which are discussed in greater detail in
[Brandt et al., 2016; Kizilkaya and Kempe, 2022].

RCV proceeds in rounds as follows. In each of m − 1
rounds, each candidate counts the total number of first-place
votes they have, and the candidate with the fewest first-place
votes is eliminated.3 All voters who selected them as their
most-preferred candidate move on to their next most pre-
ferred candidate. If, in the course of candidate eliminations,
a particular vote has no active candidates remaining, the vote
is removed from the election.4 This process terminates with a
single winner. Additionally, it is easy to see that if any candi-
date has a majority of all first-place votes at any stage of the
process, that candidate will win the election.

Plurality, Borda, harmonic, and Veto are all instances of
positional scoring rules (PSRs). PSRs are characterized by a
scoring vector c⃗ = (c1, . . . , cm) ∈ Rm, where cj ≥ cj+1 for
all j ∈ {1, . . . ,m−1} and c1 > cm. Given a profile σ⃗, a PSR
with scoring vector c⃗ assigns a score sc(aj) =

∑n
i=1 sσi(aj),

where σi(aj) is the position of aj in voter i’s ranking, σi. The
alternative with the highest score is the winner.

The scoring vectors of the four rules are as follows: Plu-
rality uses c⃗ = (1, 0, . . . , 0), Borda uses c⃗ = (m − 1,m −
2, . . . , 0), harmonic uses c⃗ = (1, 1/2, . . . , 1/m), and veto
uses c⃗ = (0, . . . , 0,−1).

The Copeland rule and Minimax both consider pair-
wise comparisons between alternatives. The Copeland rule
chooses the alternative that beats the greatest number of
other alternatives in head-to-head comparisons5, and Mini-

2Although SCFs may return sets of winners, we use tiebreaking
procedures to choose a single winner. In our theoretical results, we
use lexicographic tiebreaking. In our empirical results, we break ties
uniformly at random due to our method of vote completion.

3Tiebreaking occurs in each round of RCV.
4This occurs when voters submit incomplete preferences.
5Head-to-head ties count as half a win.



max chooses the alternative that has the smallest maximum
margin of defeat in all head-to-head comparisons.

Bucklin starts with all first-place votes and iteratively adds
second-place votes, third-place votes, and so on until an alter-
native reaches a majority of all votes counted so far; that alter-
native is returned as the winner. Plurality Veto [Kizilkaya and
Kempe, 2022] decrements each alternative’s plurality score
through n rounds of a veto process, taken in a randomly per-
muted order, and the last remaining candidate wins.

3 Worst-Case Accuracy of RCV
Somewhat paradoxically, we find that the worst-case accu-
racy of RCV seems to decrease as we increase the size of the
sample we take. However, as we will see in the empirical
section, this trend is reversed in practice.

Throughout this section, we will analyze RCV with lexi-
cographic (i.e., alphabetical) tiebreaking where, for instance,
a1 defeats a2 if they are tied.

All omitted proofs can be found in Appendix A.

3.1 Sampling a Single Vote
We begin our analysis in the case of |s| = 1, i.e., with sam-
ples consisting of only a single vote from the profile. In this
case, we can show a tight bound on the probability that RCV
predicts itself correctly.
Theorem 1. For g(n) = 1 and m ≥ 2, AR(g,m) = 1

2m−1 .

Proof. We first show the upper bound: AR(g,m) ≤ 1
2m−1 .

Consider the following profile:

2m−2 : am ≻ . . .

2m−3 : am−1 ≻ a1 ≻ . . .

...
2 : a3 ≻ a1 ≻ . . .

1 : a2 ≻ a1 ≻ . . .

1 : a1 ≻ . . .

Here, the notation c : σi means that c voters have the pref-
erence σi. In this scenario, a1 wins the election and starts
with only 1 vote, which is 1

2m−1 of the votes in the elec-
tion. Therefore, RCV predicts itself correctly with probability

1
2m−1 . This profile can be multiplied to create arbitrarily large
elections in which this holds.

Now, we show the matching lower bound: AR(g,m) ≥
1

2m−1 . Running RCV on a single ballot selects that ballot’s
first choice as the winner, so the question of finding the worst
case probability of RCV predicting itself correctly on a single
randomly selected ballot is exactly the same as determining
how small we can make the portion of ballots that select the
true RCV winner, a∗, as the first choice. Let vk(ai) repre-
sent the number of first choice votes that alternative ai re-
ceives in round k. For all k ∈ [2,m − 1], we know that
vk(ai) ≤ 2vk−1(ai) for all ai not eliminated by round k
because the losing candidate of round k − 1 always has the
fewest first choice votes in that round, so any other candi-
date cannot more than double their first place vote share from
one round to the next. We also know that by the final round,

i.e., round m− 1, the RCV winner a∗ must have at least half
of all votes. Therefore, vm−1(a

∗) ≥ n/2. Now, applying
the relation above, we see that v1(a∗) ≥ 1

2v2(a
∗) ≥ · · · ≥

1
2m−3 vm−2(a

∗) ≥ 1
2m−2 vm−1(a

∗) ≥ n
2m−1 , as desired.

3.2 Sampling All but k Votes
We now move to the other end of the sample size spectrum
and ask how well RCV can predict itself given access to al-
most all of the votes in a profile. Intuitively, it seems like
having access to more votes should only help the accuracy of
RCV when predicting itself, but we will see that this is not
necessarily the case.

Our next theorem states that, even with all but one sample
from a profile, RCV’s worst-case predictive accuracy is 0, i.e.,
there exist profiles such that running RCV on any sample of
all but one vote returns a different winner than running RCV
on the entire profile.
Theorem 2. For g(n) = n − 1 and all m ≥ 4, we have
AR(g,m) = 0.

Proof. For as few as four candidates, it is possible to con-
struct arbitrarily large profiles in which sampling every ballot
but one always yields the incorrect result. Consider the fol-
lowing election:

2 : a4 ≻ a1 ≻ a3 ≻ a2 2 : a1 ≻ a4 ≻ a3 ≻ a2

2 : a3 ≻ a4 ≻ a2 ≻ a1 2 : a2 ≻ a4 ≻ a3 ≻ a1

One can verify that a1 wins in this profile. Despite this,
when we sample all but one vote, if the missing vote has a
first choice other than a4, a4 ends up winning, and otherwise
when we remove a ballot with a4 as a first choice, a2 ends
up winning. When we multiply this profile, this property re-
mains, so we can construct arbitrarily large elections in which
sampling all but one vote and performing RCV never results
in a winner corresponding to the true winner of the election.

Lastly, in order to extend this construction to m > 4, we
can add additional candidates in an arbitrary order at the end
of each of the votes.

In fact, we can show a more general statement: Even with
all but k samples from a profile for some constant k, we can
construct profiles such that RCV’s worst-case predictive ac-
curacy is 0. However, m must depend linearly on k.
Theorem 3. For g(n) = n − k for constant k and all m ≥
2(k + 1), we have AR(g,m) = 0.

Proof. For ease of exposition, we will show an explicit con-
struction for m = 2(k + 1), but we can add additional can-
didates at the end of each vote in the construction without af-
fecting any of the calculations, so the same argument applies
for all m ≥ 2(k + 1).

Let there be m = 2(k + 1) candidates in our construction.
We will build a profile such that sampling all but k of all
ballots and running RCV always fails to select the true RCV
winner on the entire profile. Our profile contains m different
types of ballots, with each candidate represented as the first
choice of one of these types. For ballots with a first choice ai
where 1 ≤ i ≤ m

2 , the ballot order is ai ≻ am ≻ am−1 ≻



· · · ≻ ai+1. For ballots with a first choice ai where m
2 + 1 ≤

i ≤ m, the ballot order is ai, followed by am ≻ am−1 ≻
· · · ≻ ai+1 (if i ̸= m), followed by am−i+1, followed by
ai−1 ≻ ai−2 ≻ · · · ≻ am−i+2 (if i ̸= m

2 + 1). Finally, there
are m copies of each ballot for a total of n = m2 votes.

An example of our construction for m = 6 is as follows:

6 : a6 ≻ a1 ≻ a5 ≻ a4 ≻ a3 ≻ a2

6 : a5 ≻ a6 ≻ a2 ≻ a4 ≻ a3

6 : a4 ≻ a6 ≻ a5 ≻ a3

6 : a3 ≻ a6 ≻ a5 ≻ a4

6 : a2 ≻ a6 ≻ a5 ≻ a4 ≻ a3

6 : a1 ≻ a6 ≻ a5 ≻ a4 ≻ a3 ≻ a2

Note that these ballots utilize incomplete rankings. Ballots
whose last remaining choice is eliminated are simply re-
moved from the election.

We can verify that a1 wins in these profiles. The impor-
tant thing to notice is that there are two halves—the ballots
whose first choice is am

2 +1 through am, which we will call
the first half, and those with a first choice a1 through am

2
, the

second half. As we eliminate votes from the first half due to
lexicographic tie breaking one by one, candidates on the sec-
ond half gain entire piles of votes from a candidate that was
eliminated during a round. For example, the ballots choosing
am go to a1, the ballots choosing am−1 go to a2, and so on
until the ballots choosing am

2 +1 go to am
2

. During the second
half, when candidates are eliminated one by one due to lexi-
cographic tie breaking, the votes are simply removed due to
the incomplete rankings.

Now, consider sampling all but k = m
2 − 1 votes from this

profile. We will talk about which votes are “removed” from
the sample, i.e., the ones not included in the sample. Since
each pile contains m votes, it is impossible to remove an en-
tire pile, so every round during the first half will inevitably
result in one candidate gaining votes. We must remove a vote
from the ballots that chose am as the first choice, because if
we don’t, am will not lose in the first round, and since am
is the second choice of all of the other kinds of ballots, am
will gain enough first choice votes from this round to go on
to win. In fact, any deviation from the true elimination order
will end up giving the highest number candidate remaining a
decisive lead and they will go on to win the election, so we
must eliminate in the same order as in the complete profile.
Eventually we will arrive to the second half when am

2 +1 is
eliminated. Since it is necessary to remove one of the bal-
lots ranking am first, and since these ballots go to a1, a1 will
have lost at least one first choice ballot going into the second
half. Since there are m

2 candidates remaining when we arrive
to the second half and we removed m

2 − 1 ballots, it must
follow that at least one candidate, let us say ai, has not lost
any first choice votes. This means it is impossible for a1 to
win, as even if we arrive at ai by eliminating alternatives in
the correct order, a1 will be eliminated before ai.

These profiles can be multiplied and the above argument
still holds, so we can construct arbitrarily large profiles with
m = 2(k + 1) candidates in which sampling all but k votes
will always fail to predict the correct winner.

We also consider the worst-case performance of RCV on
samples that are a constant fraction of the number of voters.
In this case, we obtain an upper bound on the worst-case ac-
curacy for RCV of 1

m! .
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Theorem 4. For g(n) = αn for constant α ∈ (0, 1) and
m ≥ 2, AR(g,m) ≤ 1

m! .

4 Margin of Victory and Sampling Bounds
One additional aspect of sampling we are interested in is the
number of samples above which we are guaranteed to pick
the correct winner. The results in the previous section demon-
strate that there exist worst-case profiles that provide no such
guarantee until the sample consists of the entire profile. How-
ever, all of the worst-case results are balanced on a knife’s
edge, and changing even one vote can change the winner of
the overall election.

Therefore, we analyze these thresholds in terms of the mar-
gin of victory of the winning candidate in the entire election,
where the margin of victory for profile σ⃗, M(σ⃗), is defined
as the total number of votes that have to be changed in order
to change the winner of the election. Note that this definition
is the same as in [Bhattacharyya and Dey, 2021]. It is also
closely related to another definition proposed by Cary [2011]
in the context of RCV, MC(σ⃗), which is the total number of
votes that must be added or removed to change the winner.

We first show that our definition of margin of victory,
M(·), is related to Cary’s definition, MC(·).

Proposition 1. For all σ⃗, 1
2MC(σ⃗) ≤M(σ⃗) ≤MC(σ⃗).

For any profile σ⃗ with margin of victory M(σ⃗), we can also
develop upper bounds on the minimum sample size required
for RCV to always be correct on any sufficiently large sample;
these bounds are illustrated in Figure 1.

Proposition 2. For a profile σ⃗ consisting of n votes and m
candidates, let x be the number of first choice votes for the
RCV winner. All samples of size at least min(2(n − x) +
1, (m − 1)(n − 2M(σ⃗)) + 1) are guaranteed to return the
correct winner.

Along the lines of Cary [2011], we may also derive upper
and lower bounds on M(σ⃗) that depend on the sequence of
eliminations taken by RCV.

Proposition 3. For a profile σ⃗, M(σ⃗) ∈[⌈
1

2
min

k∈[m−1]

(
v
(−2)
k − v

(−1)
k

)⌉
, min
k∈[m−1]

(⌊n
2

⌋
+ 1− v

(2)
k

)]
,

where v
(j)
k for all j ∈ [1,m − k + 1] is the vote share for

the alternative that receives the jth most votes in that round,
and v

(−1)
k and v

(−2)
k are the vote shares of the alternatives

that receive the fewest and second-fewest votes in round k,
respectively.

6In Appendix A.5, we describe another setup that, in mathemat-
ical simulations, does even worse than 1

m!
.



RCV Plurality Borda Harm. Cope. MM Bucklin Pl. Veto Veto

M, ϕ = 0.5
ACC 73.60 68.97 72.23 70.37 74.56 74.43 70.10 97.46 38.63
MPW 2.36e-2 1.05e-2 1.50e-2 1.07e-2 2.74e-2 2.67e-2 1.03e-2 8.76e-1 2.59e-5

M, ϕ = 0.75
ACC 44.15 41.44 46.70 43.86 45.96 44.69 43.30 78.18 33.49
MPW 6.83e-3 4.26e-3 8.60e-3 5.88e-3 7.46e-3 7.75e-3 5.26e-3 9.53e-1 9.98e-4

Urn, α = 0.05
ACC 40.13 39.50 38.56 39.00 39.34 39.21 37.30 28.86 24.71
MPW 1.48e-1 1.52e-1 1.12e-1 1.20e-1 1.33e-1 1.37e-1 1.24e-1 4.25e-2 3.13e-2

Conitzer SPOC ACC 27.91 27.18 27.74 27.81 27.50 26.75 26.67 25.18 23.25
MPW 1.11e-1 1.22e-1 1.14e-1 1.17e-1 9.88e-2 1.02e-1 1.10e-1 1.13e-1 1.12e-1

Walsh SP ACC 55.44 46.67 65.73 56.53 61.13 61.53 47.60 43.94 32.86
MPW 8.40e-2 1.92e-2 3.55e-1 7.13e-2 2.13e-1 2.13e-1 1.83e-2 2.48e-2 1.48e-3

3D Cube ACC 47.64 41.84 56.38 48.67 51.72 52.61 47.35 35.60 37.60
MPW 1.09e-1 4.06e-2 3.04e-1 9.79e-2 1.67e-1 1.67e-1 7.61e-2 2.03e-2 1.81e-2

5D Sphere ACC 31.08 32.19 27.99 30.10 28.81 28.91 29.11 26.38 17.11
MPW 1.31e-1 1.58e-1 8.70e-2 1.36e-1 9.61e-2 1.02e-1 1.15e-1 1.15e-1 6.10e-2

Table 1: Accuracy of various rules predicting the RCV winner along with normalized multiplicative weights for 5% sample sizes. Rows
marked “ACC” are accuracies in percents, and rows marked “MPW” are the learnt multiplicative weights.

RCV Plurality Borda Harm. Cope. MM Bucklin Pl. Veto Veto

M, ϕ = 0.5
ACC 99.49 98.50 99.09 99.06 99.32 99.31 79.11 1.000 77.98
MPW 1.47e-1 1.31e-1 1.34e-1 1.38e-1 1.46e-1 1.46e-1 3.53e-3 1.52e-1 1.76e-3

M, ϕ = 0.75
ACC 82.30 75.00 79.64 79.41 83.01 82.33 69.85 88.00 62.25
MPW 1.50e-1 2.15e-2 1.20e-1 6.38e-2 1.54e-1 1.73e-1 1.23e-2 3.02e-1 2.74e-3

Urn, α = 0.05
ACC 70.85 64.05 63.02 69.64 66.65 69.04 45.57 16.07 33.42
MPW 2.73e-1 7.34e-2 1.03e-1 1.65e-1 1.67e-1 2.09e-1 9.43e-3 4.88e-5 7.97e-4

Conitzer SPOC ACC 49.46 44.92 44.08 47.31 43.11 42.64 29.48 19.00 29.92
MPW 2.17e-1 1.49e-1 1.42e-1 1.92e-1 1.32e-1 1.21e-1 1.72e-2 8.06e-3 2.15e-2

Walsh SP ACC 83.55 79.78 88.01 86.17 85.84 87.87 53.33 3.770 33.16
MPW 7.62e-2 4.16e-2 2.22e-1 2.11e-1 2.24e-1 2.26e-1 2.78e-4 8.95e-8 6.89e-6

3D Cube ACC 77.78 60.42 74.82 74.48 75.16 77.57 66.05 23.22 53.99
MPW 2.16e-1 1.14e-2 1.49e-1 1.49e-1 2.20e-1 2.34e-1 1.90e-2 5.40e-6 2.49e-3

5D Sphere ACC 82.15 74.15 81.43 82.57 82.52 82.95 72.38 25.95 10.41
MPW 2.40e-1 3.10e-1 4.11e-2 2.68e-1 5.67e-2 6.64e-2 1.35e-2 3.69e-3 1.30e-3

Table 2: Accuracy of various rules predicting the RCV winner along with normalized multiplicative weights for 50% sample sizes. Rows
marked “ACC” are accuracies in percents, and rows marked “MPW” are the learnt multiplicative weights.

5 Experiments
In our experiments, we explore two main questions on a mix
of synthetic elections generated from statistical cultures in the
map of elections [Szufa et al., 2020; Boehmer et al., 2021]
and real-world election data sourced from PrefLib [Mattei
and Walsh, 2013] and the Harvard Dataverse [Harvard, 2020].
First, on synthetic elections, we examine the prediction accu-
racy of various voting rules when predicting the RCV winner
on uniform samples of varying sizes. Second, on real-world
elections, we examine the accuracy with which the RCV win-
ner can be correctly predicted by each of the voting rules we
consider, as well as two additional “ensemble” rules informed
by results on the map of elections. Our code is available at
https://github.com/miceland2/STV sampling.

5.1 Synthetic Elections
Informed by prior work on the map of elections, we use the
mapel Python library to generate votes from the diverse set
of statistical cultures included in the original map. These
include the Mallows model (with dispersion parameter ϕ ∈

{0.001, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.95, 0.99, 0.999}),
Polya-Eggenberger urn models (with α ∈ {0.01, 0.02, 0.05,
0.1, 0.2, 0.5}), the Conitzer and Walsh single-peaked models,
the Conitzer single-peaked on a circle (SPOC) model, single-
crossing models, the Impartial Culture model, 1D, 2D, 3D,
5D, 10D, and 20D hypercube models, and finally 2D, 3D, and
5D hypersphere models. In the interest of space, for further
discussion of the specific statistical cultures in these models,
see Section 2.2 in [Szufa et al., 2020].

In our experiments, we vary the sample size from 10% to
100% in steps of 10%, with the addition of a 5% sample size;
additional results can be found in Appendix B.3.

In Tables 1 and 2, we present the average prediction accu-
racy (“ACC”) of each of our nine voting rules when predict-
ing the RCV winner for profiles generated according to the
statistical cultures we consider for samples consisting of 5%
and 50% of the voters, respectively. The average prediction
accuracy is taken over 100 samples on each of 100 different
profiles generated according to the statistical cultures in con-
sideration. These profiles each consist of 100 votes over 5

https://github.com/miceland2/STV_sampling
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Figure 1: Bounds on the minimum sample size needed to ensure that
evaluating RCV on any sample will identify the correct winner. For
each m, running RCV with any sample size above the corresponding
line is guaranteed to return the correct winner.

alternatives, which is roughly the average number of candi-
dates over all our real-world data.

For each statistical culture, we also treat each voting rule
as an expert and learn normalized weights for each voting
rule (“MPW”) via the classic multiplicative weights algo-
rithm [Littlestone and Warmuth, 1994; Arora et al., 2012].

Overall, we find that RCV exhibits uneven performance
across different statistical vote cultures, but its accuracy in-
creases with sample size. Plurality Veto is unexpectedly ac-
curate for Mallows models, as evinced by its remarkably high
MPW score in these settings. On the whole, we observe that
more “centered” distributions like Mallows are far easier to
predict than other families, most likely due to RCV’s sensi-
tivity to the order of eliminations in scenarios without a clear
majority winner.

5.2 Real-World Elections
One of our main empirical questions is whether we can lever-
age results from synthetic vote profiles to lead to greater
prediction accuracy on real-world elections. To this end,
we build two ensemble methods that leverage the pseudo-
distance metric underlying the map of elections in order to
predict the RCV winner of real-world elections.

The central idea behind these ensemble methods is to use
good predictors of RCV on “nearby” elections on the map
of elections in order to predict RCV outcomes on real-world
data. Given a sample s, both ensemble methods first identify
the closest statistical culture according to positionwise dis-
tance as defined in Section 3.2 in [Szufa et al., 2020]. We call
the closest statistical culture C, and use our empirical results
on C to create scores for each alternative. Throughout, let R
represent the set of rules we define in Section 2.1.

The first ensemble method, which we term “Summation,”
uses our experiments on synthetic data and adds accf (C),
which we define as the empirical accuracy of rule f predict-

ing RCV on culture C, to the score of the winner f(s) for
each rule f ∈ R. The alternative with the highest overall
score after this process is the Summation winner.

The second ensemble method, which we call “MPW,” se-
lects a predictive rule to use according to a probability distri-
bution based on the normalized weights learned on C through
the multiplicative weights process. The alternative returned
by the predictive rule is the MPW winner.

We run experiments to measure the performance of the nine
rules in Section 2.1, as well as these two ensemble rules,
on a total of 12 collections of different real-world elections
from PrefLib [Mattei and Walsh, 2013] and Harvard Data-
verse [Harvard, 2020], amounting to a total of 275 individual
elections. Each collection consists of between 8 and 46 sepa-
rate elections, each of which contain between 143 and 39,401
votes on 2 to 15 candidates. Full descriptions can be found in
Appendix B.1.

Preprocessing
For each dataset in the Harvard database, we take all available
profiles of the given locality and type of election. We exclude
elections that consist of a single candidate. For each profile,
we (1) discarded all blank rows, (2) removed all table cells la-
beled “write-in,” “overvote,” or “skipped,” and (3) kept only
the higher-ranked position for each vote if the voter gave two
rankings of the same alternatives. Generally, the final prepro-
cessing step applied to less than 10% of all votes for a given
profile. In contrast to the Harvard datasets, those from Preflib
did not require the preprocessing steps described above.

All real-world elections give strict-order-incomplete rank-
ings over the candidates, where unranked candidates in a
given vote are assumed to be tied for last place. We complete
each of these incomplete rankings using the same method
proposed by Boehmer et al. [2021] in order to (1) run each
of our voting rules without modifications or additional as-
sumptions and (2) compute the positionwise distances be-
tween each real election and those from the map of the elec-
tions using the mapel library. For each vote v that gives an
incomplete ranking for their top t candidates, we first draw
uniformly at random another vote that ranks at least the top
(t + 1) candidates and agrees with v on the top t candidates,
and we then extend v with this other vote’s (t + 1)st-ranked
candidate. If no such vote exists, we extend v with one of
their unranked candidates uniformly at random. The process
is repeated until all votes are strict-order complete.

Real-World Results
We present the average RCV sampling accuracies for each of
our rules for three collections of elections in Figure 2. For
each sample size and each election, we estimate the sampling
accuracy with 1,000 samples. The right-most column con-
tains average accuracies for all elections in each group, and
the other two columns show results from individual elections
in each group. The center column contains plots that are more
typical of the dataset, while those on the left are more extrane-
ous and typically have lower bounds on the margin of victory.

We observe that, in contrast to the theoretical results and
results on synthetic data, RCV is on average one of the best
predictors of itself even on low sample sizes. While this does
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Figure 2: Summary and individual plots for the APA, Berkeley City Council, and Alaska House of Representatives datasets. We show the
closest statistical culture and bounds on the MoV for individual elections. EMD is the positionwise distance [Szufa et al., 2020].

not mean that RCV is the best predictor of itself on every in-
dividual election, on average, this trend persists over all our
real-world data. Only among the Glasgow City Council elec-
tions, though, is RCV decisively the best predictor. Summa-
tion performs almost as well as RCV on average. This is
likely because the ensemble rules tend to agree with RCV on
high sample sizes for all the real-world data we considered,
whereas other voting rules sometimes diverged from the RCV
winner as sample size increases. The Condorcet-consistent
rules, namely Copeland and Minimax, are also among the
best predictors of RCV and only rarely diverge from the true
winner. On the other hand, MPW often suffers from poor per-
formance on low sample sizes before catching up at higher
sample sizes. This is due to the fact that, as seen in Tables 1
and 2, Plurality Veto has a very high weight in small samples
for Mallows elections; its weight decreases as sample size in-
creases. However, Plurality Veto often does very poorly in
predicting the overall RCV winner in practice. Although on
some profiles, such as those in the top-left and bottom-left of
Figure 2, Plurality Veto is an exceptional predictor of RCV
even on 5% sample sizes, such profiles are not common, and
Plurality Veto often exhibits strikingly non-monotonic behav-
ior as sample size increases.

We also note that, in direct contrast to our worst-case re-
sults, the average predictive performance of RCV increases
with sample size, corroborating prior observations that real-
world elections are far from the worst-case profiles we study
[Boehmer and Schaar, 2023].

Finally, we conclude that the positionwise distance is lim-
ited in its ability to extrapolate sampling behavior from one
election to a nearby election in terms of positionwise dis-
tance. The most obvious evidence comes from the disparity in
performance of Plurality Veto between the synthetic Mallows
profiles and the real-world elections. As seen in Figure 2,
Plurality Veto is by far the worst, on average, at predicting
RCV for all three datasets, yet most of their profiles are clos-
est to one of the Mallows cultures. This disparity in perfor-
mance can be explained by the fact that a given positionwise
frequency matrix can map to several different profiles, as ex-
plored in [Boehmer et al., 2023].

6 Discussion
This paper presents a theoretical and empirical exploration of
using RCV on samples to predict the outcome of applying
RCV on the entire election. We establish that, while RCV
exhibits bad worst-case theoretical accuracy, it is generally
the most trustworthy predictor of itself in practice.

As for future work, there are two main avenues to pur-
sue. With respect to theoretical results, it would be interest-
ing to fully characterize the conjectured monotonicity of the
worst-case prediction accuracy of RCV. We present some ini-
tial results toward this goal in Appendix A.6. We also will
study average-case predictability of RCV on samples instead
of worst-case predictability. On the empirical side, we plan
to extend our analysis to additional real-world voting data and
study more theoretically sound ensemble rules.
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A Theoretical Results
In this section, we present the proofs of Theorem 4, Proposition 1, Proposition 2, and Proposition 3, as well as additional upper
bounds on the worst-case accuracy for both RCV and other rules when predicting RCV.

A.1 Proof of Theorem 4
Theorem 4. For g(n) = αn for constant α ∈ (0, 1) and m ≥ 2, AR(g,m) ≤ 1

m! .

Proof. We define the profiles Ai for i ≥ 1. Each Ai consists of a profile of size i! over i candidates. A1 is a profile consisting
of a single ballot voting for a1.

Each Ai is defined recursively as follows. For each j < i, for every ballot in Ai−1 ranking aj first, we add i− 1 new ballots
to Ai which are the same as the ballot except that we insert ai as the second choice and slide the remaining rankings down.
Additionally, for every ballot in Ai−1, we add a new ballot to Ai which is the same except that they rank ai first and slide the
remaining preferences down.

Some examples for small m:
m = 2:

1 : a1 ≻ a2 1 : a2 ≻ a1

m = 3:

2 : a1 ≻ a3 ≻ a2 2 : a2 ≻ a3 ≻ a1

1 : a3 ≻ a1 ≻ a2 1 : a3 ≻ a2 ≻ a1

m = 4:

6 : a1 ≻ a4 ≻ a3 ≻ a2 6 : a2 ≻ a4 ≻ a3 ≻ a1

3 : a3 ≻ a4 ≻ a1 ≻ a2 3 : a3 ≻ a4 ≻ a2 ≻ a1

2 : a4 ≻ a1 ≻ a3 ≻ a2 2 : a4 ≻ a2 ≻ a3 ≻ a1

1 : a4 ≻ a3 ≻ a1 ≻ a2 1 : a4 ≻ a3 ≻ a2 ≻ a1

We can verify that a1 wins in this setup: during each round, there is a tie between all remaining candidates and the highest
number candidate is removed by lexicographic tie breaking. Candidates are eliminated from highest number to least, i.e. from
am to a1.

These profiles can be multiplied for larger and larger elections. When a candidate is eliminated, the setup recurses one lower,
so the current profile which is a multiple of the Ai profile becomes a multiple of the Ai−1 profile.

As the election grows larger and the fraction from which we sample remains constant, each candidate will receive very nearly
1/m of the first choice votes. In the complete election, the elimination order is from am to a1, i.e. am is eliminated in the
first round, then am−1 in the next round, and so on until a1 is eliminated in the final round. In this profile, the highest number
candidate is always the second choice of all of the ballots that did not rank them first. Because of this, if we eliminate any
candidate other than the highest number candidate, all of the votes will go to the highest number candidate. For large elections,
this will with very high probability put the highest number candidate above all others by a substantial margin, and she will go
on to win the election.

Because of this, for any sample which also chooses a1 as the winner, it is necessary to follow the same elimination order
as in the election on the complete profile, and wins that do not take this order will make up a vanishing portion for larger and
larger profiles.

By symmetry, each candidate is equally likely to lose not due to tie breaking in the first round, and losses due to tiebreaks
will make up a vanishing portion for large elections, so we have a 1

m chance of eliminating am in the first round. We can
see that among the ballots that rank am as the first choice, the second choice preferences are evenly distributed across the
remaining candidates, so there is still a symmetry for the remaining candidates, giving us a 1

m−1 chance of eliminating am−1

next. Continuing like this, we can see in the third round we have a 1
m−2 chance of making the correct elimination, and so on

until the final round when we have a 1
2 chance. Putting this all together gives us a 1

m! chance of choosing a1 as the winner in
the sample.

If we choose to leverage the power of incomplete rankings, we can achieve the 1
m! bound from before with a much simpler

setup.
We describe the profiles Ai, each being an a profile with i candidates. For every 1 ≤ j ≤ i, we add one ballot to Ai with a

first choice of aj followed by ai to aj+1 in descending order. Here are some examples:



m = 2

1 : a1 ≻ a2 1 : a2

m = 3

1 : a1 ≻ a3 ≻ a2 1 : a2 ≻ a3

1 : a3

m = 4

1 : a1 ≻ a4 ≻ a3 ≻ a2 1 : a2 ≻ a4 ≻ a3

1 : a3 ≻ a4 1 : a4

In these profiles, a1 wins in the entire profile and the elimination order is always ai to a1 descending. As we multiply
the profile to larger sizes, any deviation from this elimination order will nearly guarantee that the highest number candidate
remaining will win, as this will give them substantially more votes and they will be the second choice of all ballots that do not
rank them first during that round. This in essence requires that the sizes of the piles from least to greatest to be ai, ai−1, ... a2,
a1. Again, ties become unlikely for larger elections. Since all of the piles are the same size and there is nothing distinguishing
them, this is a 1

m! chance, as that is the number of permutations of the piles, each of which can be a potential ordering of their
sizes. This setup is substantially simpler, using only a linear number of distinct ballots in i whereas the setup in the main paper
uses an exponential number of distinct ballots.

A.2 Proof of Proposition 1
Proposition 1. For all σ⃗, 1

2MC(σ⃗) ≤M(σ⃗) ≤MC(σ⃗).

Proof. Since a change in one vote is exactly one addition and one removal, we have that MC(σ⃗) is never more than twice
M(σ⃗), which yields the first inequality, i.e., 1

2MC(σ⃗) ≤M(σ⃗).
Now, for an election σ⃗ consisting of n votes, consider the fewest additions and removals that results in a different winner,

and let x be the number of additions and y be the number of removals. Therefore, MC(σ⃗) = x+y. We will show how to create
another election σ⃗′ of size n that changes at most max(x, y) ≤MC(σ⃗) votes from σ⃗ with a different winner.

If y > x, this means that we have effectively changed x votes and removed y − x votes from σ⃗. Now, add back y − x first
choice votes for the new winner. These will not change the winner, and we have constructed an election the same size as the
original with a different winner with a total of at most y changes.

If x > y, this means that we have effectively changed y votes and added x− y votes to σ⃗. Now, we can remove x− y votes
from the election as follows. We will remove first choice votes for the original winner in σ⃗, and then arbitrary votes once these
run out. If there are no first choice votes for the original winner left in σ⃗′, then the winner must change. Otherwise, removing
first choice votes for the original winner cannot help them and can only cause them to be eliminated at least as early as they
were already eliminated in σ⃗′. Therefore, we have constructed an election the same size as the original with a different winner
with a total of at most x changes.

Putting together the two cases yields M(σ⃗) ≤ max(x, y) ≤MC(σ⃗), as desired.

A.3 Proof of Proposition 2
Proposition 2. For a profile σ⃗ consisting of n votes and m candidates, let x be the number of first choice votes for the RCV
winner. All samples of size at least min(2(n− x) + 1, (m− 1)(n− 2M(σ⃗)) + 1) are guaranteed to return the correct winner.

Proof. We begin with the naive bound of 2(n − x) + 1, which does not take into account M(σ⃗) or m. The argument is
immediate: in all samples of size at least 2(n− x) + 1, the number of first choice votes for the true winner must be at least half
of the size of the sample. However, this is only a useful bound when x > n/2.

Now, we will show that all samples of size at least (m − 1)(n − 2M(σ⃗)) + 1 are also guaranteed to return the true winner.
If there are x first choice votes for the winning candidate, this means that there are n − x ballots with first choice votes for
the remaining m − 1 candidates. By the pigeonhole principle, one candidate must have at least n−x

m−1 first choice votes. Any
candidate with more than half of the first choice votes will win, so we must change at most n

2 −
n−x
m−1 votes to change the winner

of the election. Therefore, M(σ⃗) ≤ n
2 −

n−x
m−1 . Solving for x, we have that x ≥ M(σ⃗)(m − 1) − n(m−3)

2 . Substituting this
value for x into our naive bound of 2(n − x) + 1 above yields (m − 1)(n − 2M(σ⃗)) + 1, as desired. Note that this bound
is sometimes much better than the first, but as m increases, the area in which it beats the naive bound becomes increasingly
restricted.



A.4 Proof of Proposition 3
Proposition 3. For a profile σ⃗, M(σ⃗) ∈[⌈

1
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where v
(j)
k for all j ∈ [1,m − k + 1] is the vote share for the alternative that receives the jth most votes in that round, and

v
(−1)
k and v

(−2)
k are the vote shares of the alternatives that receive the fewest and second-fewest votes in round k, respectively.

Proof. We begin with the lower bound. In order for the winner to change, there must be a change in some elimination. The
fewest number of changes needed to potentially change an elimination in round k is
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To show the upper bound, note that in every round k ∈ [m − 1], if we flip enough votes to the second-place candidate such
that the second-place candidate attains more than half of all votes, the overall winner is guaranteed to change. Therefore,

M(σ⃗) ≤ min
k∈[m−1]

(⌊n
2

⌋
+ 1− v

(2)
k

)
,

completing the proof.

A.5 Worse Than 1/m! Upper Bound for RCV
We find that, for m ≥ 4, there are also setups which can do worse than 1

m! with m candidates, which we describe below.
However, we found and verified these setups via numerical analysis, and leave proofs of these results to future work.

First, we will consider an additional profile with four candidates that achieves 1
24 and then we will modify it slightly to

achieve 1
48 .

Consider the following profile:

1 : a4 ≻ a1 ≻ a3 ≻ a2 1 : a3 ≻ a4 ≻ a2 ≻ a1

1 : a2 ≻ a4 ≻ a3 ≻ a1 1 : a1 ≻ a4 ≻ a3 ≻ a2

Now we multiply this profile up to a sufficient size so it becomes likely that we receive votes from each profile in roughly
equal proportions and so that losses due to tiebreaks and other coincidences such as the size of piles in our sample being equal
become highly unlikely.

We must eliminate a4 first, otherwise, a4 will go on to dominate the election. This is a 1
4 chance. Next, either a2 or a3 loses

in the next round and gives their vote shares to the other. a1 will not lose in the second round due to being far ahead due to the
votes received from a4. Suppose a2 wins in this round. If we order the size of each pile from least to greatest, at this point,
there are three possibilities: (1) a4, a1, a3, a2, (2) a4, a3, a1, a2, or (3) a4, a3, a2, a1.

Since all we know about the a1 pile at this point is that it is larger than the a4 pile, each of these possibilities are equally
likely. If we are in one of the first two cases, then barring ties which become unlikely for large profiles the size of the a4 and
a1 piles combined must be less than the size of the a3 and a2 piles combined, so a1 cannot win in the final round. So we need
the final scenario to be the case, and this is a 1

3 chance. Finally, the size of the a4 and a1 piles combined must be greater than
the size of the a3 and a2 piles combined, which is, we suspect, a 1

2 chance. If instead, a3 had beaten a2, then with switching a2
and a3 the same logic as above applies still. Multiplying these probabilities together, there is a 1

24 chance that a1 wins.
Now consider the modified profile:

k : a4 ≻ a1 ≻ a3 ≻ a2 1 : a4 ≻ a3 ≻ a2 ≻ a1

1 : a4 ≻ a2 ≻ a3 ≻ a1 k : a3 ≻ a4 ≻ a2 ≻ a1

2 : a3 ≻ a4 ≻ a1 ≻ a2 k + 2 : a2 ≻ a4 ≻ a3 ≻ a1

k + 2 : a1 ≻ a4 ≻ a3 ≻ a2

We can see that a1 still wins in this profile, and that the elimination order is the same as before.
The variable k can be increased as much as we want, which in combination with multiplying the profile to a larger size will

decrease a1’s chance of winning. The advantage of this setup is that giving a small fraction of a4’s votes to a2 and a3 allows
us to make the election choose the wrong winner if a3 beats a2 in the second round. In order for us to do this, the a2 and a3
votes must make up over half of the profile. The downside is that by the third round if the elimination order proceeds as it did
in the complete profile we will have given some of the a4 votes to a2 and some of the a3 votes to a1, which slightly increases



a1’s chances of winning. However, as we increase k to be bigger and bigger along with the size of the profile, this becomes
negligible. This ultimately gives us a 1

48 chance of choosing a1 correctly.
We can similarly construct profiles with 6 and 8 candidates that perform worse than the 1

m! bound established earlier. These
profiles make use of the random variance in the size of the first choice vote shares and incorporate probabilities that size of one
combination of piles exceeds the size of another. As we have seen for four candidates, a1 winning relies on the probability
that the largest and smallest piles exceeds the size of the middle. With six candidates, we can create a profile in which a1
winning relies on the probability that the 1st, 5th, and 6th largest piles exceeds the size of the 2nd, 3rd, and 4th piles. With eight
candidates, it is the probability that the 1st, 6th, 7th, and 8th exceeds the 2nd, 3rd, 4th and 5th.

If we let nk be the size of the kth largest pile, we can write the equation for 6 candidates as: n4 + n3 + n2 ≤ n6 + n5 + n1,
which can be rewritten as (n4 − n6) + (n3 − n5) ≤ (n1 − n2). Similarly the equation for the eight candidate setup can be
written as (n5 − n8) + (n4 − n7) + (n3 − n6) ≤ (n1 − n2). In other words, the size of the gap between the first and second
candidate’s pile must exceed the sum of the sizes of several presumably larger gaps. This suggests that probability decreases
very rapidly in m, although we are not sure yet exactly how quickly it decreases and how low a probability we can achieve.

A.6 Bounds for Large Constant Sample Sizes
Interestingly, our constructions used in the proof of Theorem 3—i.e., in the case of sampling n− k ballots, when k is odd and
less then m

2 —still work when we have only 2 copies of each ballot instead of m copies. This allows us to construct arbitrarily
large elections in which sampling over 75% of all ballots guarantees an incorrect result with RCV, given the parity of the number
of ballots excluded is odd. However, this construction requires linearly many candidates in the size of the profile, so it does not
fit nicely into our framework that we have developed thus far. We will now argue that this construction works.

We will organize votes by their original first choice, so we will refer to all the votes with a first choice of a2 as the a2 pile. We
will refer to votes from am to am/2+1 as being on the first half, since in the full election they are eliminated first. We will refer
to a pile ai being ”before” aj if i > j, again referencing the original elimination order. We will refer to the candidates am−i

and ai+1 (e.g., am and a1, or am−1 and a2) as “corresponding”. This references an important aspect of the elimination order:
If ai+1 is still in the election, then the am−i pile’s ballots (as long as i is small enough so that am−i is in the first half) will go
to ai+1 after all candidates before am−i are eliminated; otherwise, it will go to the highest-numbered candidate remaining.

For each pile, we have three options: do nothing, remove one vote, or remove both votes. Suppose we do not remove a vote
from the am pile. Since we are removing an odd number of votes, we must remove exactly one vote from at least one pile. So
after we eliminate all the candidates with 0 first choice votes, we eliminate the candidates with only one first choice vote next.
Because of the construction, all of these votes go to am, and Since am is the second choice of all of the other ballots, they will
go on to win the election. This means we must remove either one or both votes from the am pile.

Now we take notice of several important facts: The only candidate that can have more than four first-choice-votes in any
round is the highest number candidate remaining. Besides the highest number candidate remaining, only candidates on the
second half can receive more than two first choice votes in any round; this is when their corresponding candidate on the second
half loses and gives them their votes. They can in fact, receive up to, but not necessarily, four votes total. Because we have to
remove at least one vote from the am pile, a1 can only ever have up to three first-choice votes total in any round. This means if
any candidate ever receives more than three first choice votes in any round, it will be impossible for a1 to win.

Let am−x be the first candidate whose pile and corresponding candidate’s pile on the other half are both undiminished. Such
a candidate must exist; since k < m

2 , it is impossible to remove a vote from all sets of corresponding piles. Clearly, am−x

must be on the first half or we would just select the corresponding candidate instead. If am−x is never eliminated, then am−x

won the election. Otherwise, there is a round in which am−x is eliminated. If candidates preceding am−x are still in the
election, then they must have at least three first choice votes, otherwise we would not be eliminating am−x this round. Then
when am−x is eliminated, the two votes in their pile will go to the highest number candidate remaining, giving them at least
five votes. If no candidates preceding am−x are in the election and ax+1 has not been eliminated, the corresponding candidate
ax+1 will receive the votes and obtain four first-place votes. If no candidates preceding am−x are in the election and ax+1 has
been eliminated, then the ax+1 pile is currently given to am−x, the highest-numbered candidate remaining, so they have four
first choice votes. The fact that we are eliminating a candidate with four first choice votes means a1 must have already been
eliminated. Thus no matter what, a candidate other than a1 will receive more than four first choice votes during a round, while
a1 can only ever get at most three, making it impossible for a1 to win in these samples.



B Empirical Results
B.1 Description of Datasets
Our datasets are summarized in Tables 3 and 4.

Dataset Profiles Min, Max, Average Alternatives Min, Max, Average Votes
APA Leader 12 5, 5, 5.0 13318, 20239, 16991.3

Debian Leader & Logo 8 4, 9, 6.3 143, 504, 419.0
Glasgow City Council 21 8, 13, 9.9 5199, 12744, 8970.3

Table 3: Preflib dataset descriptions.

Dataset Profiles Min, Max, Average Alternatives Min, Max, Average Votes
Alaska House of Reps. 34 2, 4, 2.5 2119, 9816, 6319.8

Alaska Senate 18 2, 3, 2.4 6911, 16710, 12477.7
Berkeley City Council 24 2, 4, 3.0 1505, 10017, 6071.6

Minneapolis City Council 41 2, 8, 4.1 1928, 16457, 7225.4
Minneapolis Park Board 18 2, 5, 2.9 4697, 24466, 12705.7

NYC Democratic Council 46 2, 15, 6.4 6839, 39401, 17253.2
Oakland City Council 23 2, 7, 4.0 11182, 36890, 20115.0

Oakland School Director 18 2, 5, 2.9 10389, 34482, 19217.8
SanLeandro County Council 12 2, 4, 2.8 14203, 26953, 21242.4

Table 4: Harvard dataset descriptions.

B.2 Multiplicative Weights
The Multiplicative Weights Algorithm is a method to predict the outcome of an event using an ensemble of experts, which in our
case are voting rules. The algorithm is initially equally likely to pick any of the experts to make its decision. The probabilities,
or weights, associated with each expert get adjusted multiplicatively based on observing the outcomes of a series of training
examples. The expected error of the ensemble is only slightly worse than that of the best expert in hindsight [Arora et al.,
2012].

For each statistical culture and sample size, we use 100 profiles and 100 random samples per profile as training data, for a
total of 10000 iterations. Our learning rate, ϵ, is set to 0.001; with this learning rate, a rule that surpasses all others by several
percentage points in accuracy will have a weight that dominates the others in the multiplicative weights ensemble, while the
rules with the lowest accuracies may become very unlikely to be chosen at all.

Our pseudocode is presented in Algorithm 1. As in the body of the paper, all the learned multiplicative weights have been
normalized between 0 and 1 in the synthetic results tables for clarity.

Algorithm 1 Multiplicative Weights Train

1: function MULTIPLICATIVE-WEIGHTS-TRAIN(ϵ)
2: Initialize w1

i to 1 for all i ∈ R
3:
4: for all profiles σ and samples s of σ do
5: Pick a rule x from distribution Dt = {pt1, pt2, . . . , pt|R|}, where ptx = wt

x/
∑

k w
t
k

6: for y ∈ R do
7: if RCV (σ) = x(s) and x(s) = y(s) then
8: wt+1

y ← wt
y(1 + ϵ)

9: else if RCV (σ) ̸= x(s) and x(s) ̸= y(s) then
10: wt+1

y ← wt
y

11: else
12: wt+1

y ← wt
y(1− ϵ)

13: end if
14: end for
15: end for
16: end function



B.3 Synthetic Results
We present our full results for different sample sizes (5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 percent) on synthetic data in
Tables 1, 2, 6 to 9 and 11 to 15.

B.4 Real-World Results
We also present our results on real-world data from Preflib and the Harvard Dataverse in Figures 3 to 6.



RCV Plurality Borda Harm. Cope. MM Bucklin Pl. Veto Veto

M, ϕ = 0.001
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 25.37
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 3.63e-8

M, ϕ = 0.01
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 25.93
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 3.65e-8

M, ϕ = 0.05
ACC 99.95 99.87 99.81 99.77 99.93 99.93 99.84 100.00 27.90
MPW 1.25e-1 1.25e-1 1.24e-1 1.23e-1 1.25e-1 1.25e-1 1.25e-1 1.27e-1 6.32e-8

M, ϕ = 0.1
ACC 99.30 99.41 99.06 99.01 99.59 99.36 99.40 99.98 28.52
MPW 1.28e-1 1.25e-1 1.18e-1 1.15e-1 1.28e-1 1.28e-1 1.25e-1 1.34e-1 1.16e-7

M, ϕ = 0.25
ACC 93.37 92.04 91.43 89.77 93.14 93.68 92.16 99.92 33.60
MPW 1.25e-1 9.30e-2 8.02e-2 6.84e-2 1.27e-1 1.28e-1 9.55e-2 2.82e-1 1.10e-6

M, ϕ = 0.5
ACC 73.60 68.97 72.23 70.37 74.56 74.43 70.10 97.46 38.63
MPW 2.36e-2 1.05e-2 1.50e-2 1.07e-2 2.74e-2 2.67e-2 1.03e-2 8.76e-1 2.59e-5

M, ϕ = 0.75
ACC 44.15 41.44 46.70 43.86 45.96 44.69 43.30 78.18 33.49
MPW 6.83e-3 4.26e-3 8.60e-3 5.88e-3 7.46e-3 7.75e-3 5.26e-3 9.53e-1 9.98e-4

M, ϕ = 0.95
ACC 28.40 27.97 28.79 28.02 28.09 28.78 27.33 39.81 24.30
MPW 9.29e-2 9.64e-2 8.72e-2 8.54e-2 8.24e-2 8.72e-2 7.96e-2 3.05e-1 8.39e-2

M, ϕ = 0.99
ACC 26.96 26.13 27.42 26.15 26.10 27.17 25.98 24.00 22.51
MPW 1.21e-1 1.11e-1 1.10e-1 1.10e-1 1.10e-1 1.10e-1 1.12e-1 9.93e-2 1.17e-1

M, ϕ = 0.999
ACC 27.43 27.45 27.63 28.41 27.11 27.84 27.51 25.33 24.27
MPW 1.09e-1 1.13e-1 1.17e-1 1.02e-1 1.10e-1 1.09e-1 1.20e-1 9.72e-2 1.22e-1

IC ACC 27.29 26.73 26.58 25.98 26.59 27.00 25.48 25.58 23.33
MPW 1.06e-1 1.20e-1 1.05e-1 1.07e-1 9.65e-2 1.00e-1 1.23e-1 1.21e-1 1.21e-1

Urn, α = 0.01
ACC 29.69 29.72 30.59 30.02 31.10 30.66 30.41 26.03 24.40
MPW 1.12e-1 1.13e-1 1.24e-1 1.19e-1 1.16e-1 1.16e-1 1.23e-1 9.08e-2 8.68e-2

Urn, α = 0.02
ACC 31.58 30.14 32.39 31.16 31.66 32.25 30.47 28.86 25.72
MPW 1.17e-1 1.11e-1 1.24e-1 1.17e-1 1.19e-1 1.21e-1 1.17e-1 8.63e-2 8.65e-2

Urn, α = 0.05
ACC 40.13 39.50 38.56 39.00 39.34 39.21 37.30 28.86 24.71
MPW 1.48e-1 1.52e-1 1.12e-1 1.20e-1 1.33e-1 1.37e-1 1.24e-1 4.25e-2 3.13e-2

Urn, α = 0.1
ACC 49.11 47.91 45.51 47.30 47.58 48.17 44.63 43.36 26.07
MPW 1.65e-1 1.42e-1 1.02e-1 1.18e-1 1.37e-1 1.50e-1 1.18e-1 5.97e-2 8.38e-3

Urn, α = 0.2
ACC 60.59 58.58 51.83 56.33 57.51 57.17 54.36 49.62 25.82
MPW 1.99e-1 1.86e-1 6.55e-2 1.08e-1 1.55e-1 1.51e-1 1.00e-1 3.43e-2 1.01e-3

Urn, α = 0.5
ACC 73.38 71.86 66.01 69.70 71.39 72.09 69.03 59.44 25.39
MPW 2.08e-1 1.63e-1 5.25e-2 9.71e-2 1.64e-1 1.77e-1 1.25e-1 1.38e-2 6.54e-5

SC ACC 60.27 55.87 63.54 57.89 61.63 61.79 57.18 36.95 36.16
MPW 1.61e-1 6.93e-2 1.96e-1 8.74e-2 1.97e-1 1.97e-1 8.72e-2 2.74e-3 1.73e-3

Conitzer SP ACC 32.03 26.31 35.70 30.76 34.44 34.79 30.22 12.21 33.17
MPW 1.01e-1 7.51e-2 1.71e-1 9.91e-2 1.41e-1 1.41e-1 9.89e-2 3.79e-2 1.35e-1

Conitzer SPOC ACC 27.91 27.18 27.74 27.81 27.50 26.75 26.67 25.18 23.25
MPW 1.11e-1 1.22e-1 1.14e-1 1.17e-1 9.88e-2 1.02e-1 1.10e-1 1.13e-1 1.12e-1

Walsh SP ACC 55.44 46.67 65.73 56.53 61.13 61.53 47.60 43.94 32.86
MPW 8.40e-2 1.92e-2 3.55e-1 7.12e-2 2.13e-1 2.13e-1 1.83e-2 2.48e-2 1.48e-3

1D Interval ACC 42.03 41.18 37.47 40.07 41.17 40.88 37.96 33.22 21.31
MPW 1.66e-1 1.69e-1 9.48e-2 1.24e-1 1.31e-1 1.31e-1 1.07e-1 6.21e-2 1.58e-2

2D Square ACC 42.43 38.47 46.89 41.57 43.64 44.68 40.50 33.58 31.21
MPW 1.20e-1 7.50e-2 2.02e-1 1.05e-1 1.57e-1 1.62e-1 1.09e-1 3.59e-2 3.52e-2

3D Cube ACC 47.64 41.84 56.38 48.67 51.72 52.61 47.35 35.60 37.60
MPW 1.09e-1 4.06e-2 3.04e-1 9.79e-2 1.67e-1 1.67e-1 7.61e-2 2.03e-2 1.81e-2

5D Cube ACC 49.65 42.73 56.15 48.34 51.90 51.48 48.91 37.79 39.49
MPW 1.18e-1 4.53e-2 2.71e-1 1.00e-1 1.73e-1 1.62e-1 9.10e-2 2.30e-2 1.63e-2

10D Cube ACC 51.44 48.25 56.38 52.21 54.94 52.71 49.91 33.00 38.93
MPW 1.25e-1 6.88e-2 2.27e-1 1.16e-1 1.68e-1 1.69e-1 1.03e-1 9.85e-3 1.34e-2

20D Cube ACC 47.81 45.07 50.14 46.46 48.42 48.75 45.97 35.18 35.77
MPW 1.36e-1 9.28e-2 1.82e-1 1.22e-1 1.59e-1 1.54e-1 1.11e-1 2.41e-2 1.92e-2

2D Sphere ACC 36.75 39.16 31.14 35.54 34.14 34.14 32.10 27.94 13.08
MPW 1.47e-1 2.04e-1 8.14e-2 1.46e-1 1.04e-1 1.06e-1 1.11e-1 7.14e-2 2.95e-2

3D Sphere ACC 32.67 34.65 28.12 31.45 30.47 30.97 29.96 28.84 14.93
MPW 1.40e-1 1.76e-1 8.17e-2 1.20e-1 1.03e-1 1.02e-1 1.25e-1 1.03e-1 4.96e-2

5D Sphere ACC 31.08 32.19 27.99 30.10 28.81 28.91 29.11 26.38 17.11
MPW 1.31e-1 1.58e-1 8.70e-2 1.36e-1 9.61e-2 1.02e-1 1.15e-1 1.15e-1 6.10e-2

Table 5: Accuracy of various rules predicting the RCV winner along with normalized multiplicative weights for 5% sample sizes.



RCV Plurality Borda Harm. Cope. MM Bucklin Pl. Veto Veto

M, ϕ = 0.001
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 25.32
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 3.95e-8

M, ϕ = 0.01
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 26.02
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 5.24e-8

M, ϕ = 0.05
ACC 100.00 100.00 100.00 100.00 99.99 100.00 100.00 100.00 28.57
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 9.75e-8

M, ϕ = 0.1
ACC 99.99 99.96 99.91 99.92 99.91 99.95 99.92 100.00 31.23
MPW 1.25e-1 1.25e-1 1.24e-1 1.25e-1 1.25e-1 1.25e-1 1.24e-1 1.26e-1 1.45e-7

M, ϕ = 0.25
ACC 97.76 97.79 97.04 97.76 97.86 98.09 95.88 100.00 39.43
MPW 1.30e-1 1.24e-1 1.13e-1 1.16e-1 1.32e-1 1.29e-1 8.53e-2 1.71e-1 1.41e-6

M, ϕ = 0.5
ACC 82.95 80.24 81.95 83.40 84.26 83.38 75.07 99.96 50.27
MPW 6.02e-2 3.81e-2 4.81e-2 4.45e-2 6.17e-2 6.93e-2 1.11e-2 6.67e-1 9.86e-5

M, ϕ = 0.75
ACC 51.72 48.54 54.59 52.26 54.84 53.95 49.34 88.82 39.02
MPW 5.06e-3 2.42e-3 8.51e-3 6.29e-3 7.16e-3 6.38e-3 3.44e-3 9.60e-1 5.58e-4

M, ϕ = 0.95
ACC 31.79 31.33 32.35 33.29 33.89 32.64 31.24 40.94 27.13
MPW 8.78e-2 9.19e-2 9.40e-2 8.42e-2 8.58e-2 8.63e-2 7.80e-2 3.24e-1 6.81e-2

M, ϕ = 0.99
ACC 30.46 29.22 30.82 30.85 30.45 30.40 28.75 18.59 23.96
MPW 1.16e-1 1.25e-1 1.14e-1 1.16e-1 1.11e-1 1.11e-1 1.05e-1 9.48e-2 1.07e-1

M, ϕ = 0.999
ACC 30.26 29.19 31.26 31.67 31.20 30.18 28.59 19.98 26.08
MPW 1.13e-1 1.29e-1 1.14e-1 1.16e-1 1.20e-1 1.24e-1 1.15e-1 8.26e-2 8.55e-2

IC ACC 29.38 28.18 30.00 30.27 30.43 29.87 27.29 20.36 25.59
MPW 1.18e-1 1.22e-1 1.11e-1 1.10e-1 1.13e-1 1.19e-1 1.09e-1 9.62e-2 1.02e-1

Urn, α = 0.01
ACC 34.30 34.21 34.79 35.19 34.75 33.92 30.80 24.44 26.19
MPW 1.26e-1 1.21e-1 1.27e-1 1.21e-1 1.31e-1 1.38e-1 1.19e-1 5.33e-2 6.35e-2

Urn, α = 0.02
ACC 36.68 36.33 38.12 38.28 38.35 37.54 34.79 20.10 27.12
MPW 1.34e-1 1.26e-1 1.25e-1 1.26e-1 1.29e-1 1.34e-1 1.05e-1 5.19e-2 6.82e-2

Urn, α = 0.05
ACC 46.01 45.81 45.16 48.25 45.71 45.68 37.49 24.30 27.50
MPW 1.51e-1 1.61e-1 1.41e-1 1.54e-1 1.41e-1 1.42e-1 7.81e-2 1.08e-2 2.02e-2

Urn, α = 0.1
ACC 54.33 54.55 53.09 56.99 54.71 54.46 46.70 27.23 27.39
MPW 1.74e-1 1.76e-1 1.27e-1 1.67e-1 1.30e-1 1.60e-1 5.56e-2 8.88e-3 2.73e-3

Urn, α = 0.2
ACC 64.66 62.89 57.34 63.41 63.74 63.32 55.06 38.62 27.28
MPW 2.18e-1 2.48e-1 7.12e-2 1.53e-1 1.14e-1 1.59e-1 3.29e-2 3.96e-3 4.14e-4

Urn, α = 0.5
ACC 75.81 76.95 67.30 76.09 72.90 74.60 67.59 57.67 26.38
MPW 2.11e-1 1.88e-1 5.55e-2 1.46e-1 1.30e-1 2.08e-1 6.08e-2 1.75e-3 2.44e-5

SC ACC 67.62 61.80 68.21 66.20 68.95 68.11 60.13 23.20 40.04
MPW 1.54e-1 8.21e-2 1.97e-1 1.78e-1 1.75e-1 1.67e-1 4.63e-2 1.89e-4 1.08e-3

Conitzer SP ACC 34.17 26.52 41.31 32.99 37.11 36.19 36.06 3.85 33.78
MPW 1.17e-1 7.70e-2 2.09e-1 1.26e-1 1.40e-1 1.35e-1 1.07e-1 1.95e-2 6.96e-2

Conitzer SPOC ACC 29.68 30.03 29.70 31.35 29.13 29.34 27.47 23.31 24.41
MPW 1.20e-1 1.40e-1 1.06e-1 1.24e-1 1.05e-1 1.16e-1 1.02e-1 1.07e-1 7.95e-2

Walsh SP ACC 62.15 54.92 77.85 64.74 72.91 69.49 58.11 35.41 32.42
MPW 3.55e-2 1.01e-2 4.52e-1 1.04e-1 2.18e-1 1.69e-1 1.04e-2 1.14e-3 1.63e-4

1D Interval ACC 47.31 48.59 38.33 49.28 42.12 43.76 38.87 28.36 19.42
MPW 2.25e-1 2.15e-1 6.79e-2 1.69e-1 1.03e-1 1.28e-1 5.95e-2 2.48e-2 7.80e-3

2D Square ACC 53.76 44.56 59.15 54.71 57.14 55.61 50.45 31.05 35.81
MPW 1.13e-1 5.15e-2 2.26e-1 1.47e-1 1.86e-1 1.62e-1 9.47e-2 6.64e-3 1.40e-2

3D Cube ACC 53.79 45.01 63.12 54.66 58.10 58.36 53.82 28.64 44.38
MPW 8.45e-2 2.13e-2 3.34e-1 1.32e-1 1.85e-1 1.60e-1 6.95e-2 1.81e-3 1.16e-2

5D Cube ACC 59.39 54.75 64.93 61.61 62.90 61.80 57.74 34.72 50.56
MPW 1.01e-1 3.16e-2 2.92e-1 1.27e-1 1.85e-1 1.67e-1 7.35e-2 1.69e-3 2.06e-2

10D Cube ACC 56.15 51.38 61.60 58.19 59.06 58.47 55.13 34.75 49.30
MPW 1.20e-1 5.18e-2 2.39e-1 1.44e-1 1.94e-1 1.61e-1 7.75e-2 3.65e-4 1.24e-2

20D Cube ACC 56.73 53.52 59.48 57.42 57.71 57.54 52.41 28.11 44.50
MPW 1.28e-1 8.41e-2 2.18e-1 1.35e-1 1.79e-1 1.62e-1 7.30e-2 2.37e-3 1.87e-2

2D Sphere ACC 55.04 46.04 63.64 55.66 61.41 59.30 52.59 29.80 9.33
MPW 1.81e-1 2.73e-1 7.82e-2 1.83e-1 8.17e-2 1.00e-1 5.82e-2 3.48e-2 1.04e-2

3D Sphere ACC 56.33 49.79 63.36 58.23 60.74 58.95 53.53 25.27 10.00
MPW 1.68e-1 2.48e-1 7.76e-2 1.45e-1 8.63e-2 1.01e-1 8.31e-2 6.86e-2 2.30e-2

5D Sphere ACC 59.14 52.34 66.22 61.59 63.30 62.03 59.53 38.00 15.04
MPW 1.51e-1 2.14e-1 8.60e-2 1.36e-1 9.69e-2 1.04e-1 9.07e-2 9.09e-2 3.03e-2

Table 6: Accuracy of various rules predicting the RCV winner along with normalized multiplicative weights for 10% sample sizes.



RCV Plurality Borda Harm. Cope. MM Bucklin Pl. Veto Veto

M, ϕ = 0.001
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 25.50
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 4.73e-8

M, ϕ = 0.01
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 26.14
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 5.56e-8

M, ϕ = 0.05
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 30.36
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.35e-7

M, ϕ = 0.1
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 35.27
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 3.20e-7

M, ϕ = 0.25
ACC 99.79 99.80 99.53 99.86 99.84 99.84 99.37 100.00 47.45
MPW 1.28e-1 1.27e-1 1.23e-1 1.24e-1 1.27e-1 1.27e-1 1.12e-1 1.32e-1 3.96e-6

M, ϕ = 0.5
ACC 93.43 90.88 90.85 92.57 93.20 93.08 78.08 100.00 61.65
MPW 1.31e-1 8.30e-2 9.59e-2 9.64e-2 1.34e-1 1.38e-1 6.91e-3 3.13e-1 2.56e-4

M, ϕ = 0.75
ACC 63.89 58.86 64.71 64.48 66.12 65.47 57.71 87.97 49.05
MPW 3.90e-2 1.09e-2 4.18e-2 2.05e-2 4.38e-2 4.76e-2 8.83e-3 7.86e-1 1.35e-3

M, ϕ = 0.95
ACC 37.71 37.65 40.02 39.89 39.95 39.51 33.72 43.23 29.88
MPW 1.12e-1 1.11e-1 1.19e-1 1.12e-1 1.05e-1 1.08e-1 6.93e-2 2.10e-1 5.34e-2

M, ϕ = 0.99
ACC 35.79 33.25 36.16 35.86 36.50 36.23 31.51 16.61 26.46
MPW 1.34e-1 1.33e-1 1.25e-1 1.37e-1 1.24e-1 1.33e-1 1.01e-1 4.40e-2 6.89e-2

M, ϕ = 0.999
ACC 36.15 35.63 36.97 37.04 36.67 36.55 30.30 18.63 28.49
MPW 1.33e-1 1.09e-1 1.37e-1 1.33e-1 1.34e-1 1.46e-1 1.06e-1 3.91e-2 6.11e-2

IC ACC 34.27 32.77 35.32 34.53 35.47 33.78 30.13 19.43 28.95
MPW 1.43e-1 1.23e-1 1.27e-1 1.25e-1 1.24e-1 1.35e-1 9.47e-2 5.07e-2 7.85e-2

Urn, α = 0.01
ACC 40.79 40.18 41.01 42.17 40.98 41.48 33.70 20.76 30.14
MPW 1.61e-1 1.09e-1 1.54e-1 1.38e-1 1.40e-1 1.64e-1 7.98e-2 1.57e-2 3.80e-2

Urn, α = 0.02
ACC 45.33 41.27 46.01 46.18 45.76 45.45 38.55 16.25 32.45
MPW 1.76e-1 1.10e-1 1.46e-1 1.35e-1 1.41e-1 1.70e-1 6.59e-2 1.42e-2 4.27e-2

Urn, α = 0.05
ACC 55.60 53.89 52.38 56.62 54.60 54.82 41.06 19.64 31.65
MPW 1.76e-1 1.54e-1 1.29e-1 1.81e-1 1.43e-1 1.76e-1 3.43e-2 8.90e-4 5.28e-3

Urn, α = 0.1
ACC 65.55 61.50 59.36 65.60 63.99 63.12 50.59 20.18 29.97
MPW 2.25e-1 1.54e-1 8.48e-2 1.95e-1 1.27e-1 1.85e-1 2.76e-2 1.32e-3 7.87e-4

Urn, α = 0.2
ACC 73.02 68.07 63.45 70.68 71.48 71.86 59.48 30.77 28.83
MPW 2.59e-1 2.16e-1 4.89e-2 2.00e-1 1.06e-1 1.54e-1 1.54e-2 3.60e-4 1.08e-4

Urn, α = 0.5
ACC 81.05 81.65 71.68 80.20 76.85 79.32 71.53 51.21 28.58
MPW 2.61e-1 1.70e-1 3.25e-2 1.58e-1 1.30e-1 2.04e-1 4.28e-2 1.67e-4 7.51e-6

SC ACC 76.02 69.84 71.71 75.64 74.70 74.77 64.24 18.16 39.57
MPW 2.38e-1 8.84e-2 9.78e-2 2.36e-1 1.55e-1 1.54e-1 3.14e-2 1.72e-5 2.98e-4

Conitzer SP ACC 41.24 27.63 38.97 39.79 38.26 38.33 41.00 0.34 33.26
MPW 2.21e-1 9.17e-2 1.41e-1 1.76e-1 9.76e-2 1.02e-1 1.11e-1 1.04e-2 4.86e-2

Conitzer SPOC ACC 35.60 35.27 34.57 36.98 33.73 32.78 28.61 22.46 26.51
MPW 1.63e-1 1.44e-1 1.24e-1 1.37e-1 1.15e-1 1.13e-1 8.51e-2 5.31e-2 6.59e-2

Walsh SP ACC 71.73 64.37 84.40 75.40 82.12 81.61 57.74 21.05 33.31
MPW 2.89e-2 6.28e-3 3.57e-1 9.62e-2 2.58e-1 2.52e-1 1.43e-3 8.68e-6 1.52e-5

1D Interval ACC 55.44 53.67 40.50 57.63 46.85 46.99 42.04 24.90 20.88
MPW 3.14e-1 1.89e-1 2.78e-2 2.75e-1 7.54e-2 8.07e-2 3.30e-2 3.03e-3 1.67e-3

2D Square ACC 63.04 49.49 66.14 63.12 65.16 64.30 54.53 26.24 36.55
MPW 2.04e-1 5.14e-2 1.40e-1 2.20e-1 1.54e-1 1.59e-1 6.55e-2 1.06e-3 5.07e-3

3D Cube ACC 64.54 50.13 69.04 63.25 66.23 66.26 60.86 27.63 51.43
MPW 1.26e-1 1.85e-2 2.66e-1 1.31e-1 2.08e-1 2.00e-1 4.46e-2 1.40e-4 5.02e-3

5D Cube ACC 70.57 62.96 71.62 69.45 71.45 71.65 63.18 28.87 59.42
MPW 1.16e-1 2.03e-2 3.05e-1 1.26e-1 1.78e-1 1.86e-1 4.86e-2 1.12e-4 1.98e-2

10D Cube ACC 67.36 60.13 71.26 66.37 70.07 68.41 61.92 28.28 58.96
MPW 1.39e-1 4.41e-2 2.46e-1 1.46e-1 1.79e-1 1.91e-1 4.42e-2 2.11e-5 1.10e-2

20D Cube ACC 66.62 63.81 69.20 66.94 68.35 68.30 60.85 20.93 53.67
MPW 1.53e-1 7.10e-2 2.29e-1 1.38e-1 1.70e-1 1.83e-1 4.34e-2 8.65e-5 1.27e-2

2D Sphere ACC 66.46 52.03 68.12 67.18 68.33 68.02 57.40 23.16 7.37
MPW 1.93e-1 3.18e-1 6.17e-2 2.38e-1 7.29e-2 8.46e-2 2.20e-2 7.47e-3 2.50e-3

3D Sphere ACC 67.42 57.57 70.64 68.99 68.44 68.28 57.80 19.34 7.97
MPW 1.99e-1 2.73e-1 8.09e-2 1.75e-1 8.17e-2 1.01e-1 5.93e-2 2.32e-2 6.80e-3

5D Sphere ACC 70.37 62.07 73.77 70.96 72.24 71.63 65.85 29.13 13.56
MPW 1.80e-1 2.81e-1 7.53e-2 1.66e-1 9.27e-2 9.92e-2 6.57e-2 2.79e-2 1.24e-2

Table 7: Accuracy of various rules predicting the RCV winner along with normalized multiplicative weights for 20% sample sizes.



RCV Plurality Borda Harm. Cope. MM Bucklin Pl. Veto Veto

M, ϕ = 0.001
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 24.42
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 4.32e-8

M, ϕ = 0.01
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 26.88
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 5.08e-8

M, ϕ = 0.05
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 32.87
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 2.14e-7

M, ϕ = 0.1
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 38.31
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 4.79e-7

M, ϕ = 0.25
ACC 99.95 99.97 99.95 99.97 99.97 99.98 99.92 100.00 53.67
MPW 1.25e-1 1.24e-1 1.25e-1 1.25e-1 1.25e-1 1.26e-1 1.24e-1 1.26e-1 1.23e-5

M, ϕ = 0.5
ACC 96.81 95.27 95.77 96.25 96.93 97.19 78.98 100.00 68.42
MPW 1.55e-1 1.06e-1 1.13e-1 1.13e-1 1.54e-1 1.51e-1 4.50e-3 2.04e-1 4.20e-4

M, ϕ = 0.75
ACC 72.25 65.53 72.15 71.45 73.66 73.36 62.87 88.00 53.96
MPW 7.77e-2 1.93e-2 6.92e-2 3.81e-2 9.03e-2 9.20e-2 1.07e-2 6.01e-1 2.13e-3

M, ϕ = 0.95
ACC 43.99 42.08 46.00 44.43 45.10 44.30 35.18 43.00 32.54
MPW 1.40e-1 1.04e-1 1.43e-1 1.06e-1 1.36e-1 1.41e-1 5.66e-2 1.20e-1 5.29e-2

M, ϕ = 0.99
ACC 39.99 37.08 41.01 41.14 41.60 40.38 33.14 17.05 27.52
MPW 1.60e-1 1.41e-1 1.31e-1 1.38e-1 1.23e-1 1.39e-1 8.32e-2 3.28e-2 5.14e-2

M, ϕ = 0.999
ACC 41.34 38.13 40.88 40.02 41.26 40.45 31.28 17.06 30.20
MPW 1.47e-1 1.17e-1 1.70e-1 1.41e-1 1.54e-1 1.41e-1 6.67e-2 1.42e-2 4.87e-2

IC ACC 39.67 36.50 39.62 38.91 39.63 39.39 31.23 18.02 30.05
MPW 1.53e-1 1.19e-1 1.40e-1 1.30e-1 1.38e-1 1.41e-1 6.90e-2 3.83e-2 7.08e-2

Urn, α = 0.01
ACC 47.23 42.90 45.09 45.88 45.31 45.19 35.23 21.06 31.54
MPW 1.96e-1 8.59e-2 1.55e-1 1.47e-1 1.59e-1 1.69e-1 6.37e-2 6.22e-3 1.85e-2

Urn, α = 0.02
ACC 50.96 46.98 50.93 50.97 50.98 51.50 42.11 17.31 35.23
MPW 1.80e-1 9.08e-2 1.68e-1 1.34e-1 1.68e-1 1.68e-1 6.07e-2 5.52e-3 2.51e-2

Urn, α = 0.05
ACC 61.30 59.38 58.88 63.42 60.46 58.89 43.99 18.93 32.12
MPW 2.28e-1 1.33e-1 1.06e-1 2.00e-1 1.39e-1 1.70e-1 2.11e-2 2.60e-4 2.41e-3

Urn, α = 0.1
ACC 72.05 66.44 62.41 70.23 67.64 67.76 52.49 18.43 30.26
MPW 2.46e-1 1.36e-1 8.39e-2 2.27e-1 1.20e-1 1.74e-1 1.32e-2 1.75e-4 2.61e-4

Urn, α = 0.2
ACC 79.34 69.69 65.55 73.46 75.28 75.65 62.21 26.80 28.48
MPW 2.92e-1 2.25e-1 3.17e-2 2.10e-1 8.61e-2 1.47e-1 8.28e-3 9.96e-5 4.66e-5

Urn, α = 0.5
ACC 84.57 83.30 72.37 83.11 79.08 81.38 73.40 49.20 28.35
MPW 2.60e-1 1.76e-1 2.98e-2 1.73e-1 1.29e-1 1.95e-1 3.68e-2 4.51e-5 4.81e-6

SC ACC 81.22 73.67 74.89 80.08 77.80 78.33 64.64 16.55 40.20
MPW 2.82e-1 8.89e-2 7.32e-2 2.51e-1 1.40e-1 1.47e-1 1.85e-2 5.19e-6 1.87e-4

Conitzer SP ACC 45.15 29.25 36.88 43.75 40.28 38.96 41.60 0.03 33.28
MPW 3.16e-1 8.33e-2 8.43e-2 2.55e-1 6.89e-2 6.86e-2 8.76e-2 5.40e-3 3.16e-2

Conitzer SPOC ACC 39.31 39.32 38.58 40.17 37.49 37.52 30.84 21.16 27.25
MPW 1.68e-1 1.62e-1 1.34e-1 1.58e-1 1.18e-1 1.37e-1 5.76e-2 2.69e-2 3.90e-2

Walsh SP ACC 77.05 71.41 85.66 81.87 85.72 85.19 55.99 11.87 33.14
MPW 4.20e-2 1.22e-2 2.92e-1 1.42e-1 2.59e-1 2.52e-1 6.21e-4 5.57e-7 7.75e-6

1D Interval ACC 62.02 55.54 40.11 63.20 48.22 47.52 43.76 24.23 19.96
MPW 3.85e-1 1.71e-1 1.61e-2 3.10e-1 4.62e-2 4.72e-2 2.26e-2 1.67e-3 1.15e-3

2D Square ACC 69.83 53.87 68.38 68.32 67.89 68.14 57.46 26.50 37.78
MPW 2.48e-1 3.32e-2 1.08e-1 2.26e-1 1.63e-1 1.62e-1 5.64e-2 3.46e-4 3.28e-3

3D Cube ACC 70.03 55.54 71.71 69.12 70.96 71.15 63.36 24.22 54.71
MPW 1.67e-1 1.47e-2 2.17e-1 1.46e-1 2.06e-1 2.17e-1 2.80e-2 2.94e-5 4.97e-3

5D Cube ACC 76.29 69.29 76.09 75.70 76.45 76.85 66.67 24.29 62.56
MPW 1.64e-1 2.15e-2 2.44e-1 1.27e-1 2.00e-1 2.01e-1 2.73e-2 2.24e-5 1.53e-2

10D Cube ACC 73.50 65.69 76.26 72.38 75.34 75.11 64.71 26.19 62.04
MPW 1.62e-1 4.16e-2 2.25e-1 1.46e-1 1.83e-1 2.01e-1 3.20e-2 5.36e-6 9.70e-3

20D Cube ACC 74.03 70.17 75.32 72.20 73.69 74.59 65.35 19.08 57.21
MPW 1.75e-1 7.38e-2 2.00e-1 1.45e-1 1.77e-1 1.90e-1 3.08e-2 1.78e-5 9.69e-3

2D Sphere ACC 73.13 56.06 69.81 71.81 75.00 73.47 59.91 20.33 6.01
MPW 2.23e-1 2.96e-1 5.68e-2 2.54e-1 6.76e-2 8.28e-2 1.63e-2 2.49e-3 9.95e-4

3D Sphere ACC 74.43 62.53 72.79 73.87 72.83 72.88 60.31 16.77 6.01
MPW 2.23e-1 2.78e-1 6.55e-2 2.16e-1 7.24e-2 8.14e-2 4.94e-2 1.09e-2 3.62e-3

5D Sphere ACC 74.65 68.09 77.11 76.68 76.67 77.25 68.61 28.91 12.55
MPW 1.98e-1 2.76e-1 6.11e-2 2.26e-1 8.07e-2 9.45e-2 4.79e-2 1.07e-2 5.22e-3

Table 8: Accuracy of various rules predicting the RCV winner along with normalized multiplicative weights for 30% sample sizes.



RCV Plurality Borda Harm. Cope. MM Bucklin Pl. Veto Veto

M, ϕ = 0.001
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 25.15
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 4.04e-8

M, ϕ = 0.01
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 27.06
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 7.09e-8

M, ϕ = 0.05
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 33.77
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 2.35e-7

M, ϕ = 0.1
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 38.63
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 8.02e-7

M, ϕ = 0.25
ACC 100.00 100.00 100.00 100.00 99.99 100.00 99.99 100.00 58.30
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.23e-1 1.25e-1 2.85e-5

M, ϕ = 0.5
ACC 98.76 97.71 97.64 98.17 98.63 98.63 78.82 100.00 73.33
MPW 1.48e-1 1.20e-1 1.24e-1 1.32e-1 1.50e-1 1.52e-1 3.52e-3 1.70e-1 9.11e-4

M, ϕ = 0.75
ACC 77.92 70.48 77.15 75.86 78.59 78.02 66.65 90.00 58.15
MPW 1.29e-1 2.18e-2 1.11e-1 5.17e-2 1.45e-1 1.51e-1 1.12e-2 3.76e-1 2.89e-3

M, ϕ = 0.95
ACC 48.88 44.29 50.43 48.74 49.57 49.95 36.39 40.00 34.29
MPW 1.46e-1 1.21e-1 1.55e-1 1.36e-1 1.47e-1 1.51e-1 3.74e-2 6.96e-2 3.67e-2

M, ϕ = 0.99
ACC 44.42 39.52 45.53 43.99 45.01 45.05 32.38 15.01 29.15
MPW 1.68e-1 1.45e-1 1.30e-1 1.63e-1 1.40e-1 1.40e-1 5.88e-2 1.39e-2 4.15e-2

M, ϕ = 0.999
ACC 45.85 42.90 45.38 46.20 45.74 45.63 31.01 19.00 33.46
MPW 1.66e-1 9.65e-2 1.75e-1 1.57e-1 1.55e-1 1.63e-1 4.20e-2 8.29e-3 3.66e-2

IC ACC 43.45 39.78 44.02 42.18 41.97 43.55 30.60 16.00 30.94
MPW 1.72e-1 1.03e-1 1.75e-1 1.31e-1 1.51e-1 1.53e-1 4.43e-2 1.80e-2 5.18e-2

Urn, α = 0.01
ACC 52.30 47.22 49.14 50.82 48.63 49.38 35.55 20.00 33.96
MPW 1.95e-1 7.17e-2 1.52e-1 1.59e-1 1.69e-1 2.01e-1 3.64e-2 2.48e-3 1.35e-2

Urn, α = 0.02
ACC 55.53 49.43 56.49 54.96 55.07 56.07 42.74 16.03 36.10
MPW 2.35e-1 7.95e-2 1.54e-1 1.37e-1 1.46e-1 1.83e-1 4.18e-2 3.47e-3 2.01e-2

Urn, α = 0.05
ACC 67.00 61.49 62.51 66.19 64.27 63.93 45.69 16.38 33.66
MPW 2.32e-1 9.98e-2 1.09e-1 1.93e-1 1.53e-1 1.98e-1 1.36e-2 9.43e-5 1.28e-3

Urn, α = 0.1
ACC 77.44 68.41 64.72 72.89 69.94 72.85 54.62 18.19 30.85
MPW 2.96e-1 1.15e-1 6.38e-2 1.97e-1 1.27e-1 1.91e-1 9.55e-3 8.83e-5 1.40e-4

Urn, α = 0.2
ACC 82.93 72.66 68.62 75.88 77.85 78.50 63.20 24.44 28.66
MPW 3.39e-1 1.86e-1 3.02e-2 2.05e-1 9.16e-2 1.42e-1 5.45e-3 3.36e-5 3.86e-5

Urn, α = 0.5
ACC 86.79 84.27 73.71 83.04 80.58 82.80 74.74 46.78 28.56
MPW 2.81e-1 1.54e-1 2.92e-2 1.75e-1 1.28e-1 1.99e-1 3.29e-2 1.94e-5 3.87e-6

SC ACC 85.62 75.81 76.28 82.90 79.89 80.16 66.37 16.06 39.34
MPW 3.49e-1 1.02e-1 5.00e-2 2.49e-1 1.18e-1 1.16e-1 1.64e-2 2.50e-6 8.98e-5

Conitzer SP ACC 50.09 31.53 38.02 47.19 38.07 36.03 44.63 0.00 32.98
MPW 3.47e-1 8.79e-2 6.24e-2 2.97e-1 4.75e-2 4.86e-2 8.92e-2 2.99e-3 1.75e-2

Conitzer SPOC ACC 44.79 41.88 42.08 43.64 40.57 40.56 29.89 20.03 27.66
MPW 1.59e-1 1.57e-1 1.49e-1 1.78e-1 1.37e-1 1.45e-1 3.78e-2 1.19e-2 2.57e-2

Walsh SP ACC 81.16 74.79 86.80 83.68 86.38 86.63 55.02 6.32 34.34
MPW 4.95e-2 1.61e-2 2.64e-1 1.67e-1 2.53e-1 2.50e-1 2.50e-4 8.78e-8 4.48e-6

1D Interval ACC 66.86 58.41 40.88 65.66 48.60 48.12 43.98 22.05 19.21
MPW 4.83e-1 1.70e-1 5.51e-3 2.81e-1 2.21e-2 2.44e-2 1.30e-2 8.01e-4 4.88e-4

2D Square ACC 72.72 56.48 68.39 71.34 71.39 72.00 59.22 24.55 36.84
MPW 3.07e-1 2.82e-2 8.46e-2 2.56e-1 1.35e-1 1.53e-1 3.53e-2 2.06e-4 1.59e-3

3D Cube ACC 74.03 57.79 74.77 71.69 73.18 73.88 65.55 22.63 54.92
MPW 1.76e-1 1.17e-2 1.66e-1 1.48e-1 2.29e-1 2.44e-1 2.28e-2 1.20e-5 2.31e-3

5D Cube ACC 79.93 72.10 78.64 78.32 79.92 80.19 68.53 24.12 64.07
MPW 1.92e-1 1.70e-2 2.15e-1 1.11e-1 2.05e-1 2.28e-1 2.34e-2 7.95e-6 8.92e-3

10D Cube ACC 77.12 69.90 80.04 77.84 78.83 78.60 68.76 26.55 64.99
MPW 1.66e-1 4.77e-2 2.20e-1 1.56e-1 1.93e-1 1.89e-1 2.18e-2 1.34e-6 6.24e-3

20D Cube ACC 78.21 73.94 77.69 77.25 78.24 78.76 67.31 18.27 60.72
MPW 1.87e-1 7.83e-2 1.59e-1 1.60e-1 1.93e-1 1.88e-1 2.62e-2 6.73e-6 7.75e-3

2D Sphere ACC 77.79 57.23 72.12 77.22 76.08 76.98 64.05 18.86 4.71
MPW 2.47e-1 2.65e-1 4.11e-2 3.23e-1 5.16e-2 6.31e-2 7.93e-3 1.22e-3 4.11e-4

3D Sphere ACC 78.40 66.26 75.97 76.42 76.62 76.63 62.31 15.71 5.46
MPW 2.45e-1 2.51e-1 4.91e-2 2.73e-1 6.86e-2 7.71e-2 3.08e-2 3.94e-3 1.12e-3

5D Sphere ACC 78.68 72.77 79.52 80.55 81.05 80.93 71.53 25.68 11.45
MPW 2.17e-1 2.93e-1 5.25e-2 2.72e-1 6.21e-2 7.21e-2 2.63e-2 4.30e-3 1.73e-3

Table 9: Accuracy of various rules predicting the RCV winner along with normalized multiplicative weights for 40% sample sizes.



RCV Plurality Borda Harm. Cope. MM Bucklin Pl. Veto Veto

M, ϕ = 0.001
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 25.53
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 4.32e-8

M, ϕ = 0.01
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 27.15
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 7.19e-8

M, ϕ = 0.05
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 34.34
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 2.74e-7

M, ϕ = 0.1
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 41.36
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.07e-6

M, ϕ = 0.25
ACC 100.00 100.00 100.00 100.00 100.00 100.00 99.98 100.00 61.99
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 6.22e-5

M, ϕ = 0.5
ACC 99.49 98.50 99.09 99.06 99.32 99.31 79.11 100.00 77.98
MPW 1.47e-1 1.31e-1 1.34e-1 1.38e-1 1.46e-1 1.46e-1 3.53e-3 1.52e-1 1.75e-3

M, ϕ = 0.75
ACC 82.30 75.00 79.64 79.41 83.01 82.33 69.85 88.00 62.25
MPW 1.50e-1 2.15e-2 1.20e-1 6.38e-2 1.54e-1 1.73e-1 1.23e-2 3.02e-1 2.74e-3

M, ϕ = 0.95
ACC 53.23 46.41 54.33 52.92 54.83 53.19 35.03 39.00 35.93
MPW 1.69e-1 8.29e-2 1.89e-1 1.30e-1 1.79e-1 1.80e-1 1.75e-2 2.98e-2 2.33e-2

M, ϕ = 0.99
ACC 50.62 44.24 49.06 48.23 49.32 50.13 32.17 19.00 30.41
MPW 1.75e-1 1.48e-1 1.34e-1 1.69e-1 1.32e-1 1.76e-1 3.41e-2 7.12e-3 2.37e-2

M, ϕ = 0.999
ACC 51.22 44.88 48.28 48.20 49.33 49.14 31.41 19.00 34.67
MPW 2.02e-1 7.81e-2 1.92e-1 1.25e-1 1.74e-1 1.76e-1 2.68e-2 3.61e-3 2.23e-2

IC ACC 47.27 41.08 48.50 46.42 46.53 45.36 30.49 20.01 32.09
MPW 1.86e-1 7.78e-2 1.76e-1 1.17e-1 1.84e-1 1.73e-1 2.82e-2 9.85e-3 4.77e-2

Urn, α = 0.01
ACC 56.98 50.23 51.11 53.24 52.71 53.22 35.71 21.00 33.18
MPW 2.25e-1 5.60e-2 1.63e-1 1.47e-1 1.72e-1 2.13e-1 1.73e-2 7.70e-4 6.12e-3

Urn, α = 0.02
ACC 61.98 49.98 57.87 58.19 59.08 59.51 44.23 18.01 37.98
MPW 2.85e-1 7.38e-2 1.22e-1 1.46e-1 1.63e-1 1.75e-1 2.44e-2 1.41e-3 1.01e-2

Urn, α = 0.05
ACC 70.85 64.05 63.02 69.64 66.65 69.04 45.57 16.07 33.42
MPW 2.73e-1 7.33e-2 1.03e-1 1.65e-1 1.67e-1 2.09e-1 9.43e-3 4.88e-5 7.96e-4

Urn, α = 0.1
ACC 80.61 70.68 65.66 74.14 72.46 75.33 54.97 16.57 31.27
MPW 3.51e-1 9.65e-2 5.19e-2 1.94e-1 1.15e-1 1.86e-1 6.41e-3 4.93e-5 9.30e-5

Urn, α = 0.2
ACC 86.30 71.89 69.33 77.66 80.53 81.28 64.48 23.97 29.18
MPW 4.02e-1 1.85e-1 2.15e-2 1.86e-1 7.93e-2 1.22e-1 4.11e-3 1.92e-5 2.28e-5

Urn, α = 0.5
ACC 88.66 84.78 73.34 85.06 81.67 83.83 75.59 45.24 28.60
MPW 2.98e-1 1.51e-1 2.73e-2 1.74e-1 1.26e-1 1.95e-1 2.88e-2 1.10e-5 3.11e-6

SC ACC 87.91 76.61 76.71 84.31 81.98 81.83 67.15 17.05 40.29
MPW 3.93e-1 8.45e-2 3.83e-2 2.49e-1 1.14e-1 1.10e-1 1.23e-2 1.31e-6 6.83e-5

Conitzer SP ACC 53.66 31.41 37.29 49.68 35.71 36.65 46.61 0.00 33.47
MPW 4.42e-1 9.36e-2 2.88e-2 2.81e-1 2.43e-2 2.50e-2 8.49e-2 2.33e-3 1.79e-2

SPOC Conitzer ACC 49.46 44.92 44.08 47.31 43.11 42.64 29.48 19.00 29.92
MPW 2.17e-1 1.49e-1 1.42e-1 1.92e-1 1.32e-1 1.21e-1 1.72e-2 8.06e-3 2.15e-2

Walsh SP ACC 83.55 79.78 88.01 86.17 85.84 87.87 53.33 3.77 33.16
MPW 7.62e-2 4.16e-2 2.22e-1 2.11e-1 2.24e-1 2.26e-1 2.78e-4 8.95e-8 6.89e-6

1D Interval ACC 70.45 59.56 42.50 67.94 49.49 50.42 45.25 22.89 20.00
MPW 5.50e-1 1.06e-1 5.36e-3 2.84e-1 2.29e-2 2.41e-2 7.55e-3 3.17e-4 3.01e-4

2D Square ACC 77.71 57.94 69.83 74.97 73.21 72.80 60.76 24.12 36.43
MPW 4.04e-1 2.47e-2 5.33e-2 2.29e-1 1.28e-1 1.34e-1 2.62e-2 1.08e-4 1.07e-3

3D Cube ACC 77.78 60.42 74.82 74.48 75.16 77.57 66.05 23.22 53.99
MPW 2.15e-1 1.14e-2 1.49e-1 1.49e-1 2.20e-1 2.34e-1 1.90e-2 5.40e-6 2.49e-3

5D Cube ACC 82.84 73.42 79.89 80.33 82.23 82.70 69.52 24.61 64.32
MPW 1.91e-1 1.67e-2 2.02e-1 1.15e-1 2.27e-1 2.26e-1 1.62e-2 3.79e-6 6.31e-3

10D Cube ACC 81.59 70.58 81.38 79.28 81.14 82.44 70.36 24.15 65.95
MPW 1.98e-1 4.57e-2 2.09e-1 1.33e-1 1.87e-1 2.03e-1 1.85e-2 8.20e-7 5.75e-3

20D Cube ACC 81.43 76.90 80.46 81.07 81.49 81.33 70.20 17.06 61.66
MPW 2.17e-1 7.34e-2 1.55e-1 1.56e-1 1.76e-1 1.96e-1 2.13e-2 2.95e-6 5.36e-3

2D Sphere ACC 81.41 59.11 73.54 78.79 76.44 78.80 63.29 18.49 5.30
MPW 2.92e-1 2.11e-1 4.70e-2 3.07e-1 5.75e-2 7.82e-2 6.64e-3 6.97e-4 2.06e-4

3D Sphere ACC 82.32 68.96 76.27 80.33 78.10 78.04 63.36 14.29 5.00
MPW 3.47e-1 1.86e-1 4.97e-2 2.50e-1 6.40e-2 7.48e-2 2.43e-2 2.42e-3 8.00e-4

5D Sphere ACC 82.15 74.15 81.43 82.57 82.52 82.95 72.38 25.95 10.41
MPW 2.40e-1 3.10e-1 4.11e-2 2.68e-1 5.67e-2 6.64e-2 1.35e-2 3.69e-3 1.30e-3

Table 10: Accuracy of various rules predicting the RCV winner along with normalized multiplicative weights for 50% sample sizes.



RCV Plurality Borda Harm. Cope. MM Bucklin Pl. Veto Veto

M, ϕ = 0.001
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 25.84
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 4.37e-8

M, ϕ = 0.01
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 28.65
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 8.15e-8

M, ϕ = 0.05
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 35.19
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 2.72e-7

M, ϕ = 0.1
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 42.38
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.41e-6

M, ϕ = 0.25
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 64.68
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.12e-4

M, ϕ = 0.5
ACC 99.84 99.36 99.58 99.61 99.63 99.73 79.18 100.00 79.99
MPW 1.44e-1 1.40e-1 1.35e-1 1.40e-1 1.44e-1 1.44e-1 3.42e-3 1.46e-1 3.27e-3

M, ϕ = 0.75
ACC 86.03 78.33 83.92 82.66 85.42 85.53 71.97 90.00 64.80
MPW 1.92e-1 2.31e-2 1.20e-1 6.57e-2 1.92e-1 2.04e-1 1.14e-2 1.88e-1 2.76e-3

M, ϕ = 0.95
ACC 59.39 50.74 59.17 56.84 59.38 59.25 35.43 40.00 38.68
MPW 1.88e-1 6.61e-2 1.93e-1 1.30e-1 1.78e-1 1.95e-1 9.88e-3 2.10e-2 1.91e-2

M, ϕ = 0.99
ACC 54.65 46.46 52.27 52.62 53.51 53.08 31.45 16.00 33.62
MPW 2.14e-1 1.38e-1 1.40e-1 1.74e-1 1.40e-1 1.63e-1 1.56e-2 3.52e-3 1.33e-2

M, ϕ = 0.999
ACC 55.39 47.32 53.62 54.33 53.35 52.80 29.63 18.00 37.73
MPW 2.25e-1 6.12e-2 1.90e-1 1.33e-1 1.77e-1 1.86e-1 1.31e-2 1.84e-3 1.35e-2

IC ACC 51.52 43.23 50.32 48.82 48.99 50.51 30.22 17.00 32.75
MPW 2.31e-1 6.73e-2 1.67e-1 1.18e-1 1.76e-1 1.91e-1 1.40e-2 5.29e-3 2.96e-2

Urn, α = 0.01
ACC 62.05 52.07 54.52 57.38 54.69 55.81 34.70 20.00 37.76
MPW 2.78e-1 4.47e-2 1.36e-1 1.39e-1 1.75e-1 2.12e-1 1.06e-2 4.34e-4 4.08e-3

Urn, α = 0.02
ACC 66.38 50.85 62.66 61.53 60.31 64.21 45.03 17.00 38.58
MPW 3.27e-1 5.36e-2 1.38e-1 1.20e-1 1.51e-1 1.78e-1 2.14e-2 5.02e-4 1.06e-2

Urn, α = 0.05
ACC 74.78 67.02 67.24 73.12 70.42 71.52 47.10 18.03 34.39
MPW 3.11e-1 5.27e-2 8.05e-2 1.55e-1 1.65e-1 2.33e-1 3.36e-3 1.74e-5 3.96e-4

Urn, α = 0.1
ACC 84.04 72.25 66.19 76.49 75.03 76.50 54.54 17.23 30.40
MPW 3.51e-1 7.09e-2 5.30e-2 1.94e-1 1.19e-1 2.07e-1 4.50e-3 2.16e-5 5.86e-5

Urn, α = 0.2
ACC 89.21 72.72 70.09 78.71 81.98 81.95 64.24 22.45 30.50
MPW 4.44e-1 1.51e-1 2.35e-2 1.81e-1 7.45e-2 1.22e-1 4.21e-3 8.77e-6 1.79e-5

Urn, α = 0.5
ACC 90.43 85.32 74.07 85.90 82.58 84.57 75.85 43.38 29.09
MPW 3.20e-1 1.47e-1 2.67e-2 1.65e-1 1.27e-1 1.90e-1 2.53e-2 7.35e-6 2.84e-6

SC ACC 90.19 79.53 75.55 85.69 82.88 82.80 67.44 15.01 40.00
MPW 4.39e-1 7.90e-2 3.08e-2 2.47e-1 9.59e-2 9.80e-2 9.87e-3 9.64e-7 5.17e-5

Conitzer SP ACC 58.84 32.35 35.91 52.46 36.87 36.45 47.76 0.00 33.57
MPW 5.25e-1 6.51e-2 1.79e-2 2.80e-1 1.61e-2 1.64e-2 6.79e-2 9.93e-4 1.02e-2

Conitzer SPOC ACC 53.98 49.51 48.22 53.13 46.97 46.30 27.87 19.00 31.14
MPW 2.11e-1 1.47e-1 1.68e-1 2.03e-1 1.28e-1 1.17e-1 8.55e-3 3.13e-3 1.48e-2

Walsh SP ACC 86.43 81.51 86.99 86.08 86.94 87.98 52.88 2.04 33.48
MPW 7.82e-2 4.81e-2 2.20e-1 2.09e-1 2.22e-1 2.22e-1 1.53e-4 2.67e-8 3.40e-6

1D Interval ACC 74.90 63.69 42.08 70.33 48.76 50.39 47.54 21.88 19.55
MPW 6.36e-1 9.18e-2 2.26e-3 2.42e-1 1.13e-2 1.16e-2 4.56e-3 1.94e-4 1.71e-4

2D Square ACC 79.76 60.38 70.57 77.19 74.72 73.58 61.17 23.70 37.25
MPW 4.82e-1 1.43e-2 3.97e-2 1.99e-1 1.20e-1 1.24e-1 2.03e-2 6.09e-5 5.64e-4

3D Cube ACC 80.69 60.51 75.27 77.88 78.56 78.19 67.28 22.08 54.80
MPW 2.54e-1 9.15e-3 1.22e-1 1.34e-1 2.23e-1 2.41e-1 1.48e-2 3.12e-6 2.04e-3

5D Cube ACC 85.14 75.14 81.20 80.99 84.87 84.47 70.32 23.30 64.43
MPW 2.27e-1 1.29e-2 1.64e-1 1.04e-1 2.30e-1 2.43e-1 1.48e-2 2.18e-6 4.52e-3

10D Cube ACC 84.15 74.11 83.08 81.89 84.07 84.02 72.15 27.71 66.59
MPW 2.00e-1 5.67e-2 1.85e-1 1.50e-1 1.83e-1 2.06e-1 1.48e-2 3.78e-7 4.44e-3

20D Cube ACC 84.51 78.53 81.14 82.03 82.95 83.43 71.81 17.05 62.43
MPW 2.25e-1 7.38e-2 1.46e-1 1.44e-1 1.81e-1 2.01e-1 2.37e-2 1.70e-6 4.38e-3

2D Sphere ACC 84.60 59.39 76.12 80.55 81.98 79.40 64.66 18.86 5.37
MPW 3.74e-1 1.61e-1 4.10e-2 2.96e-1 5.74e-2 6.53e-2 3.81e-3 3.78e-4 1.06e-4

3D Sphere ACC 85.44 69.77 77.73 81.28 80.15 80.25 64.58 15.13 5.94
MPW 4.15e-1 1.46e-1 3.77e-2 2.49e-1 5.79e-2 7.38e-2 1.92e-2 1.27e-3 3.08e-4

5D Sphere ACC 84.95 77.10 83.23 83.97 84.17 84.60 72.46 26.68 10.55
MPW 3.14e-1 2.53e-1 3.34e-2 2.68e-1 5.35e-2 6.69e-2 8.82e-3 1.68e-3 6.52e-4

Table 11: Accuracy of various rules predicting the RCV winner along with normalized multiplicative weights for 60% sample sizes.



RCV Plurality Borda Harm. Cope. MM Bucklin Pl. Veto Veto

M, ϕ = 0.001
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 25.41
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 5.27e-8

M, ϕ = 0.01
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 28.67
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 7.22e-8

M, ϕ = 0.05
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 36.25
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 2.89e-7

M, ϕ = 0.1
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 43.42
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.84e-6

M, ϕ = 0.25
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 66.63
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.56e-4

M, ϕ = 0.5
ACC 99.92 99.64 99.81 99.85 99.90 99.96 79.17 100.00 82.96
MPW 1.42e-1 1.41e-1 1.41e-1 1.41e-1 1.42e-1 1.42e-1 3.48e-3 1.42e-1 4.81e-3

M, ϕ = 0.75
ACC 88.74 79.91 85.43 85.70 87.62 88.40 74.35 89.00 68.01
MPW 2.13e-1 2.10e-2 1.23e-1 6.47e-2 2.11e-1 2.33e-1 9.49e-3 1.21e-1 3.84e-3

M, ϕ = 0.95
ACC 63.78 52.72 63.35 62.11 64.51 63.03 34.97 42.00 41.08
MPW 2.02e-1 4.37e-2 2.07e-1 1.12e-1 1.89e-1 2.26e-1 3.41e-3 8.49e-3 9.67e-3

M, ϕ = 0.99
ACC 60.50 47.79 57.31 57.77 58.62 58.90 29.63 18.00 31.59
MPW 2.45e-1 1.11e-1 1.42e-1 1.71e-1 1.46e-1 1.68e-1 6.84e-3 1.47e-3 8.91e-3

M, ϕ = 0.999
ACC 61.94 50.89 57.67 57.54 57.08 57.90 28.56 21.00 39.67
MPW 2.45e-1 4.28e-2 2.11e-1 1.25e-1 1.78e-1 1.83e-1 4.54e-3 6.79e-4 8.89e-3

IC ACC 57.03 47.46 53.29 52.42 55.50 55.55 29.27 20.00 35.76
MPW 2.42e-1 5.23e-2 1.97e-1 1.07e-1 1.79e-1 1.99e-1 4.51e-3 1.62e-3 1.79e-2

Urn, α = 0.01
ACC 66.20 54.10 57.03 58.35 60.61 59.58 36.03 20.00 36.29
MPW 2.73e-1 2.72e-2 1.38e-1 1.24e-1 1.78e-1 2.52e-1 6.03e-3 1.46e-4 1.74e-3

Urn, α = 0.02
ACC 70.85 53.42 64.06 62.91 66.69 65.64 43.71 18.00 39.64
MPW 4.17e-1 3.04e-2 1.32e-1 8.47e-2 1.48e-1 1.71e-1 1.08e-2 2.26e-4 6.42e-3

Urn, α = 0.05
ACC 78.38 68.87 68.44 75.59 72.69 74.46 47.50 19.02 35.58
MPW 3.72e-1 3.29e-2 6.78e-2 1.28e-1 1.70e-1 2.26e-1 2.95e-3 1.28e-5 2.29e-4

Urn, α = 0.1
ACC 86.73 71.48 66.67 78.18 74.13 79.04 55.33 17.13 30.55
MPW 4.63e-1 5.30e-2 4.19e-2 1.66e-1 1.05e-1 1.67e-1 3.81e-3 1.60e-5 3.95e-5

Urn, α = 0.2
ACC 90.51 72.43 73.39 81.70 82.98 82.34 64.65 21.91 30.50
MPW 4.62e-1 1.56e-1 1.56e-2 1.74e-1 6.88e-2 1.21e-1 2.73e-3 7.72e-6 1.33e-5

Urn, α = 0.5
ACC 92.31 85.22 74.39 84.66 83.10 85.15 76.69 42.17 29.75
MPW 3.39e-1 1.44e-1 2.62e-2 1.70e-1 1.21e-1 1.74e-1 2.55e-2 5.01e-6 2.37e-6

SC ACC 91.77 81.53 78.14 86.29 84.00 83.85 67.58 15.00 40.89
MPW 4.51e-1 8.39e-2 1.93e-2 2.94e-1 7.12e-2 7.27e-2 7.14e-3 6.42e-7 2.74e-5

Conitzer SP ACC 62.73 34.40 39.02 55.98 34.53 35.98 49.09 0.00 32.93
MPW 6.80e-1 4.59e-2 8.40e-3 2.12e-1 6.86e-3 6.80e-3 3.30e-2 4.28e-4 5.88e-3

Conitzer SPOC ACC 58.88 53.81 50.71 57.17 50.43 49.93 27.69 20.00 33.54
MPW 2.96e-1 1.41e-1 1.24e-1 2.14e-1 1.03e-1 1.10e-1 3.72e-3 2.01e-3 6.95e-3

Walsh SP ACC 88.67 84.74 88.00 88.49 86.99 88.01 51.70 1.42 33.30
MPW 1.21e-1 9.76e-2 1.91e-1 2.07e-1 1.91e-1 1.92e-1 1.87e-4 3.33e-8 4.87e-6

1D Interval ACC 78.25 61.12 40.65 71.81 49.75 51.09 46.64 21.91 19.35
MPW 7.37e-1 6.44e-2 1.33e-3 1.78e-1 8.03e-3 7.67e-3 3.60e-3 1.38e-4 1.08e-4

2D Square ACC 83.12 60.51 71.46 78.48 74.44 74.76 61.85 24.43 37.34
MPW 5.96e-1 1.30e-2 2.12e-2 1.77e-1 8.91e-2 9.15e-2 1.18e-2 3.31e-5 3.75e-4

3D Cube ACC 82.93 63.64 74.93 77.07 81.05 78.91 67.69 22.02 57.08
MPW 2.74e-1 8.36e-3 8.07e-2 1.01e-1 2.53e-1 2.68e-1 1.36e-2 1.39e-6 1.29e-3

5D Cube ACC 87.58 76.80 81.04 84.78 86.03 86.38 70.82 23.17 64.48
MPW 2.47e-1 1.26e-2 1.50e-1 9.99e-2 2.36e-1 2.39e-1 1.14e-2 1.51e-6 4.32e-3

10D Cube ACC 86.51 75.87 84.88 83.91 86.37 87.19 73.26 25.44 67.79
MPW 2.17e-1 4.87e-2 1.49e-1 1.39e-1 2.08e-1 2.23e-1 1.12e-2 2.75e-7 4.08e-3

20D Cube ACC 86.29 83.31 84.30 84.20 85.27 85.16 72.79 18.02 62.25
MPW 2.34e-1 7.56e-2 1.35e-1 1.61e-1 1.73e-1 1.98e-1 1.84e-2 9.89e-7 3.93e-3

2D Sphere ACC 88.38 60.50 73.34 83.18 81.70 80.60 64.77 17.39 5.07
MPW 4.78e-1 1.19e-1 3.32e-2 2.62e-1 4.59e-2 5.98e-2 2.15e-3 1.64e-4 4.21e-5

3D Sphere ACC 87.85 71.35 77.68 83.00 82.10 81.58 65.37 14.05 4.29
MPW 5.14e-1 1.18e-1 2.91e-2 2.23e-1 4.60e-2 5.94e-2 8.93e-3 6.37e-4 1.39e-4

5D Sphere ACC 87.36 78.09 83.64 85.84 87.06 87.68 74.80 25.54 11.98
MPW 4.75e-1 1.59e-1 2.27e-2 2.42e-1 4.47e-2 5.16e-2 3.97e-3 7.64e-4 2.36e-4

Table 12: Accuracy of various rules predicting the RCV winner along with normalized multiplicative weights for 70% sample sizes.



RCV Plurality Borda Harm. Cope. MM Bucklin Pl. Veto Veto

M, ϕ = 0.001
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 25.82
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 4.10e-8

M, ϕ = 0.01
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 29.09
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 8.64e-8

M, ϕ = 0.05
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 35.74
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 3.21e-7

M, ϕ = 0.1
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 44.85
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 2.25e-6

M, ϕ = 0.25
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 69.08
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 2.48e-4

M, ϕ = 0.5
ACC 100.00 99.81 99.97 99.95 99.97 100.00 79.23 100.00 84.73
MPW 1.41e-1 1.41e-1 1.41e-1 1.41e-1 1.41e-1 1.41e-1 4.26e-3 1.41e-1 7.21e-3

M, ϕ = 0.75
ACC 91.90 82.91 87.88 87.70 90.68 90.85 75.33 89.00 70.50
MPW 2.21e-1 2.08e-2 1.34e-1 6.01e-2 2.24e-1 2.38e-1 7.56e-3 9.08e-2 4.46e-3

M, ϕ = 0.95
ACC 71.44 56.51 67.26 66.69 68.19 68.03 33.05 39.00 41.50
MPW 2.85e-1 3.03e-2 1.44e-1 1.05e-1 2.02e-1 2.20e-1 1.60e-3 5.79e-3 6.34e-3

M, ϕ = 0.99
ACC 66.38 50.45 64.91 60.12 64.43 65.22 27.68 16.00 34.03
MPW 3.21e-1 8.98e-2 1.19e-1 1.59e-1 1.26e-1 1.78e-1 2.55e-3 7.46e-4 3.26e-3

M, ϕ = 0.999
ACC 67.49 53.67 61.70 62.79 63.82 63.32 27.44 17.00 39.34
MPW 3.02e-1 2.12e-2 1.98e-1 9.01e-2 1.77e-1 2.04e-1 1.78e-3 2.01e-4 6.11e-3

IC ACC 62.04 49.37 57.91 57.91 58.81 60.77 27.33 18.00 37.24
MPW 2.89e-1 4.30e-2 1.73e-1 1.10e-1 1.67e-1 2.05e-1 1.52e-3 5.34e-4 1.11e-2

Urn, α = 0.01
ACC 71.61 54.07 59.17 61.58 63.35 64.43 34.69 21.00 37.97
MPW 4.13e-1 2.32e-2 8.21e-2 1.26e-1 1.35e-1 2.18e-1 1.89e-3 6.14e-5 7.94e-4

Urn, α = 0.02
ACC 75.74 57.81 66.28 67.21 69.71 68.58 43.84 17.00 38.98
MPW 5.62e-1 2.52e-2 6.82e-2 8.67e-2 1.23e-1 1.25e-1 5.42e-3 1.46e-4 3.50e-3

Urn, α = 0.05
ACC 82.79 71.11 70.66 78.51 74.70 79.35 48.34 19.01 34.06
MPW 4.57e-1 2.54e-2 4.98e-2 9.56e-2 1.66e-1 2.05e-1 1.52e-3 5.54e-6 1.23e-4

Urn, α = 0.1
ACC 88.82 73.56 67.70 78.87 77.63 81.02 57.43 16.07 31.90
MPW 5.18e-1 3.71e-2 3.62e-2 1.54e-1 9.93e-2 1.51e-1 2.96e-3 1.16e-5 2.68e-5

Urn, α = 0.2
ACC 93.52 73.58 72.34 81.25 84.09 84.77 65.84 21.04 31.28
MPW 5.13e-1 1.40e-1 1.55e-2 1.77e-1 5.61e-2 9.47e-2 2.38e-3 4.71e-6 1.20e-5

Urn, α = 0.5
ACC 94.23 85.85 74.08 85.10 83.85 85.94 76.96 41.41 29.56
MPW 3.71e-1 1.32e-1 2.52e-2 1.64e-1 1.18e-1 1.66e-1 2.33e-2 3.57e-6 1.92e-6

SC ACC 93.64 82.23 80.70 85.58 84.76 84.70 68.50 16.00 39.88
MPW 4.62e-1 7.16e-2 1.44e-2 3.04e-1 7.15e-2 7.01e-2 6.37e-3 4.63e-7 2.08e-5

Conitzer SP ACC 68.15 33.52 32.55 57.74 33.54 35.01 50.70 0.00 33.54
MPW 7.71e-1 3.84e-2 2.72e-3 1.61e-1 2.48e-3 2.44e-3 2.03e-2 1.23e-4 2.27e-3

Conitzer SPOC ACC 66.22 55.31 56.28 61.01 53.23 56.41 26.47 20.00 33.98
MPW 3.46e-1 1.18e-1 1.24e-1 2.17e-1 9.32e-2 9.51e-2 1.40e-3 6.06e-4 5.25e-3

Walsh SP ACC 90.35 85.07 86.00 86.25 87.00 87.00 52.37 0.66 33.29
MPW 1.58e-1 9.89e-2 1.84e-1 1.90e-1 1.84e-1 1.84e-1 1.21e-4 2.04e-8 2.95e-6

1D Interval ACC 82.04 62.84 41.10 72.85 52.09 49.02 48.43 21.96 20.24
MPW 8.52e-1 2.70e-2 5.77e-4 1.12e-1 3.53e-3 3.59e-3 1.41e-3 4.40e-5 3.79e-5

2D Square ACC 86.14 61.96 70.89 78.66 77.35 76.34 62.50 22.18 36.64
MPW 6.36e-1 8.57e-3 1.85e-2 1.44e-1 8.75e-2 9.50e-2 1.00e-2 1.20e-5 2.14e-4

3D Cube ACC 86.77 62.49 75.76 80.45 82.09 82.44 67.25 23.01 57.86
MPW 3.73e-1 1.03e-2 5.29e-2 1.11e-1 2.16e-1 2.27e-1 1.02e-2 1.29e-6 7.80e-4

5D Cube ACC 90.14 76.61 85.05 85.79 88.38 88.48 69.54 24.02 64.29
MPW 2.68e-1 9.72e-3 1.31e-1 8.77e-2 2.42e-1 2.49e-1 8.56e-3 9.95e-7 3.21e-3

10D Cube ACC 90.36 79.72 84.18 84.95 89.19 89.39 74.70 23.46 68.98
MPW 2.54e-1 4.93e-2 1.49e-1 1.23e-1 1.94e-1 2.17e-1 1.01e-2 1.54e-7 3.54e-3

20D Cube ACC 89.19 82.41 85.96 86.26 86.61 87.64 74.01 18.00 63.94
MPW 2.49e-1 8.66e-2 1.11e-1 1.71e-1 1.73e-1 1.93e-1 1.52e-2 6.67e-7 1.82e-3

2D Sphere ACC 90.81 61.77 75.31 84.58 84.66 82.27 67.30 17.18 3.60
MPW 6.59e-1 5.30e-2 2.90e-2 1.54e-1 4.67e-2 5.64e-2 1.20e-3 6.09e-5 1.20e-5

3D Sphere ACC 90.17 75.13 78.88 83.93 83.84 83.80 66.67 14.04 3.89
MPW 6.89e-1 5.87e-2 2.07e-2 1.31e-1 3.77e-2 5.78e-2 5.20e-3 3.23e-4 4.55e-5

5D Sphere ACC 90.27 80.30 83.57 89.06 90.08 89.74 74.56 25.26 10.55
MPW 5.91e-1 1.31e-1 1.35e-2 1.94e-1 2.82e-2 4.14e-2 1.40e-3 2.73e-4 8.16e-5

Table 13: Accuracy of various rules predicting the RCV winner along with normalized multiplicative weights for 80% sample sizes.



RCV Plurality Borda Harm. Cope. MM Bucklin Pl. Veto Veto

M, ϕ = 0.001
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 25.65
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 4.89e-8

M, ϕ = 0.01
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 29.92
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.02e-7

M, ϕ = 0.05
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 35.52
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 3.79e-7

M, ϕ = 0.1
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 45.40
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 2.66e-6

M, ϕ = 0.25
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 69.68
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 3.15e-4

M, ϕ = 0.5
ACC 100.00 99.98 100.00 99.99 100.00 100.00 80.08 100.00 86.56
MPW 1.41e-1 1.41e-1 1.41e-1 1.41e-1 1.41e-1 1.41e-1 3.72e-3 1.41e-1 1.04e-2

M, ϕ = 0.75
ACC 94.75 84.67 89.14 89.56 93.55 93.12 77.79 90.00 72.99
MPW 2.29e-1 2.48e-2 1.24e-1 7.21e-2 2.22e-1 2.36e-1 7.31e-3 8.18e-2 3.20e-3

M, ϕ = 0.95
ACC 78.40 61.07 73.02 69.27 74.74 75.54 32.39 41.00 44.23
MPW 3.30e-1 1.23e-2 1.46e-1 6.79e-2 1.99e-1 2.39e-1 3.04e-4 1.66e-3 2.55e-3

M, ϕ = 0.99
ACC 74.64 53.05 67.55 63.44 69.27 69.08 25.35 16.00 33.73
MPW 4.70e-1 4.88e-2 7.70e-2 8.94e-2 1.23e-1 1.88e-1 7.42e-4 2.13e-4 2.06e-3

M, ϕ = 0.999
ACC 76.17 56.26 66.35 65.52 69.43 69.92 25.96 15.00 42.91
MPW 3.73e-1 1.56e-2 1.77e-1 7.88e-2 1.69e-1 1.83e-1 4.97e-4 6.50e-5 2.27e-3

IC ACC 69.35 53.14 63.72 60.71 63.58 65.49 27.66 17.00 40.44
MPW 3.94e-1 2.60e-2 1.61e-1 8.63e-2 1.33e-1 1.96e-1 2.43e-4 1.56e-4 2.75e-3

Urn, α = 0.01
ACC 78.26 58.06 62.42 66.27 67.70 69.14 35.99 20.00 37.14
MPW 5.35e-1 1.31e-2 6.32e-2 1.11e-1 1.17e-1 1.59e-1 6.65e-4 2.29e-5 4.31e-4

Urn, α = 0.02
ACC 82.61 55.79 67.85 70.73 73.60 72.17 42.76 18.00 42.85
MPW 6.61e-1 1.37e-2 4.79e-2 5.92e-2 1.01e-1 1.12e-1 3.46e-3 5.47e-5 1.88e-3

Urn, α = 0.05
ACC 87.85 72.06 70.54 78.58 77.08 79.70 48.04 17.00 33.66
MPW 5.92e-1 1.43e-2 2.95e-2 7.26e-2 1.37e-1 1.54e-1 8.28e-4 2.47e-6 4.71e-5

Urn, α = 0.1
ACC 91.89 73.53 67.12 79.41 78.86 82.12 55.53 17.01 31.23
MPW 5.82e-1 2.98e-2 2.72e-2 1.34e-1 1.08e-1 1.17e-1 2.32e-3 6.76e-6 1.85e-5

Urn, α = 0.2
ACC 95.72 73.18 72.47 82.82 86.41 85.80 65.31 19.49 32.28
MPW 5.67e-1 1.08e-1 1.52e-2 1.57e-1 4.76e-2 1.03e-1 2.21e-3 2.53e-6 1.15e-5

Urn, α = 0.5
ACC 95.76 85.81 74.49 85.04 84.79 86.23 78.59 40.33 29.50
MPW 4.09e-1 1.18e-1 2.25e-2 1.64e-1 1.11e-1 1.55e-1 1.99e-2 2.42e-6 1.63e-6

SC ACC 95.71 83.85 78.83 87.34 85.66 85.48 68.31 16.00 39.81
MPW 5.24e-1 5.02e-2 1.30e-2 2.59e-1 7.39e-2 7.37e-2 6.16e-3 3.40e-7 1.92e-5

Conitzer SP ACC 76.13 33.91 38.06 59.57 35.17 35.44 52.58 0.00 33.24
MPW 9.22e-1 8.64e-3 4.54e-4 5.44e-2 4.61e-4 4.53e-4 1.26e-2 1.95e-5 6.49e-4

Conitzer SPOC ACC 74.74 61.12 57.47 65.89 59.43 60.33 25.25 20.00 37.21
MPW 5.49e-1 6.69e-2 7.35e-2 1.95e-1 5.94e-2 5.35e-2 4.27e-4 2.07e-4 1.96e-3

Walsh SP ACC 93.43 86.12 87.00 87.32 87.00 86.00 52.58 0.40 32.69
MPW 2.14e-1 1.28e-1 1.62e-1 1.73e-1 1.62e-1 1.62e-1 1.01e-4 1.43e-8 2.93e-6

1D Interval ACC 87.87 63.28 40.04 73.60 49.18 49.27 47.87 22.98 19.13
MPW 9.28e-1 1.46e-2 2.12e-4 5.30e-2 1.64e-3 1.65e-3 7.10e-4 1.86e-5 1.80e-5

2D Square ACC 89.40 63.96 73.00 77.69 76.67 76.52 64.46 22.11 37.03
MPW 7.37e-1 3.70e-3 1.32e-2 9.93e-2 6.94e-2 7.23e-2 4.95e-3 4.63e-6 9.59e-5

3D Cube ACC 90.34 64.70 77.99 81.82 82.48 82.57 68.24 22.00 59.56
MPW 4.28e-1 7.50e-3 4.38e-2 9.10e-2 2.06e-1 2.16e-1 7.50e-3 6.99e-7 7.96e-4

5D Cube ACC 93.39 77.55 86.60 86.89 89.76 90.33 72.45 24.00 64.65
MPW 2.87e-1 9.03e-3 1.15e-1 8.97e-2 2.37e-1 2.53e-1 8.08e-3 6.31e-7 1.82e-3

10D Cube ACC 92.92 79.66 87.42 88.08 90.11 92.08 74.98 26.22 68.78
MPW 2.75e-1 4.31e-2 1.29e-1 1.17e-1 1.93e-1 2.33e-1 7.53e-3 8.68e-8 2.67e-3

20D Cube ACC 91.40 84.38 86.49 89.40 88.70 89.23 74.00 17.00 63.09
MPW 2.76e-1 6.99e-2 1.08e-1 1.64e-1 1.66e-1 2.02e-1 1.28e-2 3.57e-7 1.88e-3

2D Sphere ACC 93.28 64.33 74.86 85.15 85.33 82.60 66.32 18.04 4.78
MPW 8.29e-1 1.99e-2 1.62e-2 6.18e-2 3.17e-2 4.08e-2 3.82e-4 1.36e-5 2.60e-6

3D Sphere ACC 92.99 74.48 81.47 86.04 85.62 85.83 66.39 14.00 5.01
MPW 8.27e-1 3.04e-2 9.78e-3 8.44e-2 1.94e-2 2.71e-2 2.00e-3 6.64e-5 1.11e-5

5D Sphere ACC 93.22 82.40 87.15 88.99 91.45 91.88 74.53 26.09 10.39
MPW 7.65e-1 5.27e-2 8.68e-3 1.36e-1 1.60e-2 2.12e-2 4.60e-4 8.85e-5 2.10e-5

Table 14: Accuracy of various rules predicting the RCV winner along with normalized multiplicative weights for 90% sample sizes.



RCV Plurality Borda Harm. Cope. MM Bucklin Pl. Veto Veto

M, ϕ = 0.001
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 25.73
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 5.12e-8

M, ϕ = 0.01
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 30.07
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.11e-7

M, ϕ = 0.05
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 36.37
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 3.67e-7

M, ϕ = 0.1
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 46.31
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 3.10e-6

M, ϕ = 0.25
ACC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 71.43
MPW 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 1.25e-1 4.28e-4

M, ϕ = 0.5
ACC 100.00 100.00 100.00 100.00 100.00 100.00 81.80 100.00 88.15
MPW 1.41e-1 1.41e-1 1.41e-1 1.41e-1 1.41e-1 1.41e-1 3.01e-3 1.41e-1 1.33e-2

M, ϕ = 0.75
ACC 97.93 87.58 91.00 94.00 97.19 97.09 79.72 88.00 73.32
MPW 2.50e-1 2.19e-2 1.12e-1 6.55e-2 2.54e-1 2.35e-1 3.93e-3 5.48e-2 2.48e-3

M, ϕ = 0.95
ACC 92.56 60.37 78.52 74.00 83.37 85.41 33.82 43.00 46.05
MPW 7.15e-1 9.70e-4 3.56e-2 1.64e-2 9.68e-2 1.35e-1 2.56e-5 1.71e-4 3.87e-4

M, ϕ = 0.99
ACC 91.59 56.60 74.51 67.00 77.41 78.90 23.50 19.00 40.30
MPW 8.92e-1 5.89e-3 1.27e-2 1.01e-2 2.37e-2 5.52e-2 1.33e-5 4.48e-6 8.72e-5

M, ϕ = 0.999
ACC 91.87 61.81 71.54 72.00 74.71 78.77 24.67 18.00 45.35
MPW 7.43e-1 1.73e-3 8.08e-2 2.11e-2 8.69e-2 6.57e-2 3.23e-5 2.79e-6 2.91e-4

IC ACC 87.32 56.19 65.05 63.00 76.22 77.65 27.77 18.00 47.65
MPW 5.16e-1 5.90e-3 9.37e-2 3.84e-2 7.15e-2 2.74e-1 1.94e-5 1.48e-5 8.12e-4

Urn, α = 0.01
ACC 94.33 57.30 64.56 66.00 71.34 74.04 34.68 21.00 37.07
MPW 7.88e-1 2.98e-3 3.38e-2 2.52e-2 5.01e-2 9.99e-2 1.33e-4 3.65e-6 6.09e-5

Urn, α = 0.02
ACC 92.60 54.52 70.07 71.00 76.63 75.04 42.45 17.00 43.59
MPW 8.95e-1 3.22e-3 1.07e-2 1.54e-2 3.33e-2 4.13e-2 5.21e-4 6.74e-6 2.12e-4

Urn, α = 0.05
ACC 94.93 74.04 72.49 80.00 82.28 83.40 48.22 16.00 32.43
MPW 7.29e-1 6.22e-3 1.77e-2 3.97e-2 9.96e-2 1.08e-1 3.20e-4 9.07e-7 1.44e-5

Urn, α = 0.1
ACC 96.32 73.05 69.00 78.00 79.68 83.42 57.50 16.00 31.45
MPW 7.75e-1 1.43e-2 9.22e-3 7.24e-2 6.91e-2 5.92e-2 1.12e-3 3.19e-6 9.28e-6

Urn, α = 0.2
ACC 99.00 70.56 72.56 81.00 87.99 87.53 66.46 19.97 32.07
MPW 6.64e-1 8.47e-2 7.55e-3 1.19e-1 4.22e-2 8.04e-2 1.43e-3 1.44e-6 5.42e-6

Urn, α = 0.5
ACC 99.45 87.54 74.00 85.00 86.33 87.46 79.17 39.00 29.78
MPW 4.54e-1 1.04e-1 2.11e-2 1.58e-1 1.09e-1 1.37e-1 1.65e-2 1.58e-6 1.66e-6

SC ACC 98.05 84.49 77.41 91.00 87.05 86.93 68.83 15.00 40.70
MPW 6.01e-1 3.33e-2 7.44e-3 2.06e-1 7.37e-2 7.37e-2 4.84e-3 1.90e-7 1.24e-5

Conitzer SP ACC 92.24 37.14 35.00 62.00 36.49 36.51 53.90 0.00 33.71
MPW 9.86e-1 1.75e-3 3.07e-5 1.14e-2 2.93e-5 2.98e-5 1.09e-3 2.88e-7 3.24e-5

Conitzer SPOC ACC 91.34 61.62 63.12 69.00 65.14 63.41 23.17 22.00 39.53
MPW 8.62e-1 2.10e-2 1.18e-2 8.76e-2 8.30e-3 9.35e-3 1.82e-5 1.66e-5 1.20e-4

Walsh SP ACC 98.56 86.45 88.00 87.00 87.00 88.00 53.52 0.00 33.42
MPW 3.28e-1 1.41e-1 1.27e-1 1.49e-1 1.27e-1 1.27e-1 9.48e-5 1.27e-8 2.68e-6

1D Interval ACC 95.71 63.06 43.00 79.00 53.00 51.00 49.73 23.00 20.86
MPW 9.86e-1 3.01e-3 3.16e-5 9.79e-3 3.29e-4 3.27e-4 1.33e-4 2.42e-6 2.70e-6

2D Square ACC 97.09 65.26 73.00 79.00 79.87 78.67 64.29 23.00 37.40
MPW 8.82e-1 1.06e-3 4.03e-3 3.77e-2 3.64e-2 3.61e-2 2.77e-3 1.52e-6 2.92e-5

3D Cube ACC 96.05 61.54 78.00 85.00 85.47 86.85 68.16 21.00 56.39
MPW 5.35e-1 7.81e-3 2.80e-2 1.12e-1 1.51e-1 1.59e-1 6.05e-3 2.82e-7 5.16e-4

5D Cube ACC 96.42 78.85 88.67 88.00 91.09 91.38 71.91 22.00 64.40
MPW 3.22e-1 5.53e-3 6.57e-2 9.63e-2 2.33e-1 2.69e-1 7.02e-3 4.42e-7 1.43e-3

10D Cube ACC 96.94 75.98 85.44 92.00 94.58 96.47 75.10 24.00 69.52
MPW 3.34e-1 2.46e-2 9.19e-2 9.37e-2 2.16e-1 2.34e-1 3.94e-3 4.44e-8 2.22e-3

20D Cube ACC 97.03 84.59 86.00 92.37 92.55 93.63 76.69 17.00 63.66
MPW 3.51e-1 5.28e-2 7.43e-2 1.03e-1 1.88e-1 2.21e-1 9.03e-3 1.90e-7 8.98e-4

2D Sphere ACC 97.22 64.59 77.38 89.00 86.47 85.98 67.41 16.00 4.48
MPW 9.68e-1 2.43e-3 2.21e-3 6.63e-3 1.02e-2 1.02e-2 1.79e-5 9.31e-7 1.01e-7

3D Sphere ACC 99.11 76.45 83.00 87.00 88.35 88.04 67.06 15.00 3.87
MPW 9.85e-1 1.34e-3 7.37e-4 7.48e-3 2.06e-3 2.96e-3 4.46e-5 1.87e-6 2.02e-7

5D Sphere ACC 97.55 81.99 87.00 89.00 93.81 91.50 74.63 24.00 8.89
MPW 9.66e-1 5.61e-3 6.63e-4 2.14e-2 2.90e-3 3.29e-3 1.50e-5 3.68e-6 6.45e-7

Table 15: Accuracy of various rules predicting the RCV winner along with normalized multiplicative weights for 100% sample sizes.
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Figure 3: Summary and individual plots for the APA, Berkeley City Council, and Alaska House of Representatives datasets. We show the
closest statistical culture and bounds on the MoV for individual elections. EMD is the positionwise distance [Szufa et al., 2020].
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Figure 4: Summary and individual plots for the Glasgow City Council, Minneapolis City Council, and Minneapolis Park Board datasets. We
show the closest statistical culture and bounds on the MoV for individual elections. EMD is the positionwise distance [Szufa et al., 2020].
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Figure 5: Summary and individual plots for the Debian, Oakland City Council, and Oakland School Director. We show the closest statistical
culture and bounds on the MoV for individual elections. EMD is the positionwise distance [Szufa et al., 2020].
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Figure 6: Summary and individual plots for the Alaska Senate, Ney York City Democratic Council, and San Leandro County Council datasets.
We show the closest statistical culture and bounds on the MoV for individual elections. EMD is the positionwise distance [Szufa et al., 2020].
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