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Abstract
We study proportionality in approval-based multi-
winner elections with a variable number of win-
ners, where both the size and identity of the win-
ning committee are informed by voters’ opinions.
While proportionality has been studied in multi-
winner elections with a fixed number of winners, it
has not been considered in the variable number of
winners setting. The measure of proportionality we
consider is average satisfaction (AS), which intu-
itively measures the number of agreements on aver-
age between sufficiently large and cohesive groups
of voters and the output of the voting rule. First, we
show an upper bound on AS that any determinis-
tic rule can provide, and that straightforward adap-
tations of deterministic rules from the fixed num-
ber of winners setting do not achieve better than a
1/2 approximation to AS even for large numbers of
candidates. We then prove that a natural random-
ized rule achieves a 29/32 approximation to AS.

1 Introduction
We study multiwinner approval-based elections, where a
group of agents, or voters, selects a committee from a set of
candidates based on the agents’ preferences. Each agent ex-
presses her preferences through an approval vote, where she
designates a subset of candidates she approves for the com-
mittee, and all votes are then aggregated to select a winning
committee from the pool of candidates.

Some multiwinner elections include a fixed committee
size: the outcome must fill exactly k seats on a committee.
This is known as the fixed number of winners (FNW) set-
ting, and there is a large body of work on the complexity
and proportionality of various voting rules in the FNW set-
ting [Aziz et al., 2017; Sánchez-Fernández et al., 2017; Aziz
et al., 2018; Brill et al., 2017; Peters and Skowron, 2019;
Skowron et al., 2017b]. In contrast, we are interested in the
setting in which there is no a priori fixed committee size, also
known as the variable number of winners (VNW) setting. In
this case, both the size of the committee and the candidates
chosen to sit on the committee are informed by agents’ votes.
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We present a setting where VNW elections are a natural fit;
Faliszewski et al. [2017] discuss others.

Consider an election that consists of a series of ballot mea-
sures, where each ballot question can easily be reversed such
that “Yes” becomes “No” and “No” becomes “Yes”. This is a
practical concern, as ballots are often deliberately constructed
such that a “Yes” on one question represents a vote in favor of
upholding a current statute, while a “Yes” on another question
down the ballot represents a vote in favor of repealing a cur-
rent statute [Mueller, 1969]. In this case, voters derive utility
from every decision they agree with, whether it is an approval
vote or a disapproval vote. Note that, because there is no set
number of measures that must be “elected” (i.e., passed), this
constitutes a VNW election.

It can be important to ensure that the selected alternatives
are chosen in a proportional manner. For instance, in the case
of ballot measures, we may want to ensure that all groups in
the electorate are satisfied with at least some of the outcomes.
In other words, a small majority of the electorate should not
be able to overrule a sizable minority on every ballot measure.

In order to study proportionality in FNW elections, re-
searchers have proposed the axioms of justified represen-
tation (JR), proportional justified representation (PJR), ex-
tended justified representation (EJR), and average satisfac-
tion (AS) [Aziz et al., 2017; Sánchez-Fernández et al., 2017],
which capture the intuition that all sufficiently large groups
that agree on sufficiently many candidates should achieve
some measure of satisfaction. However, to our knowledge,
we are the first to study representation in VNW elections.

Our Contributions: Our main research goal is to study
proportionality in multiwinner elections with a variable num-
ber of winners. In particular, we study the proportionality
measure of average satisfaction (AS) and show that there is a
separation between the performance of deterministic and ran-
domized voting rules.

As our first contribution, we develop a framework for
thinking about proportionality in VNW elections. Previous
work on proportionality in FNW elections is largely based
on the concept of justified representation (and extensions
thereof). However, as we discuss in Section 3, JR-based no-
tions of proportionality are less compelling in VNW elections
than in FNW elections. Therefore, we instead base our ap-
proach on the concept of average satisfaction, which is ar-
guably a more robust version of justified representation.



Second, in Section 4, we consider the proportionality guar-
antees of deterministic rules in the VNW setting. We ex-
tend three existing deterministic rules for the FNW setting
to the VNW setting, and show that these rules do not guar-
antee good approximations to average satisfaction. We also
prove upper bounds on the level of average satisfaction that
any deterministic rule can provide.

Finally, in Section 5, motivated by the shortcomings of de-
terministic rules, we turn our attention to randomized rules
and show that a natural randomized rule provides a good ap-
proximation to average satisfaction.

Related Work
There is a significant body of work studying proportionality
in FNW elections. As mentioned above, Aziz et al. [2017]
put forward the compelling axiom of justified representation
(JR), as well as a stronger version of this axiom, extended
justified representation (EJR) to capture the notion that any
sufficiently large and cohesive group of voters deserves some
measure of representation in the elected committee. Sánchez-
Fernández et al. [2017] build on this idea by introducing the
intermediate axiom of proportional justified representation
(PJR), a relaxation of EJR that is more stringent than JR.

Average satisfaction (AS) was first defined by Sánchez-
Fernández et al. [2017], who study the average satisfaction
guaranteed by extended justified representation (EJR). Fur-
ther work by Aziz et al. [2018] shows that Proportional Ap-
proval Voting (PAV) guarantees a level of average satisfaction
that implies EJR. Additionally, Skowron et al. [2017a] extend
the notion of average satisfaction to the context of complete
rankings as opposed to committee selection. Further work by
Skowron [2018] studies the proportionality degree of various
multiwinner rules by considering the average satisfaction of
all groups of a certain size.

There is also a significant body of work studying VNW
elections; however, to the best of our knowledge, none of the
proposed rules satisfy proportionality (and, in general, that is
not their goal). Kilgour [2016] proposes a multitude of rules
for VNW elections, including satisfaction approval voting
and variants thereof. In a related vein, Kilgour et al. [2006]
and Brams et al. [2007] study the minimax and minisum rules
for selecting a committee in the VNW setting. Fishburn and
Pekeč [2004] study threshold approaches to committee selec-
tion, which are VNW rules in the sense that the size of the
selected committee depends on the approval votes. Addition-
ally, the Mean Rule [Duddy et al., 2016] and Borda Mean
Rule [Brandl and Peters, 2019] can be seen as VNW rules
when given approval votes. Finally, Faliszewski et al. [2017]
study the computational complexity of various VNW rules,
but do not consider proportionality in their analysis.

2 Preliminaries
Let N = {v1, . . . , vn} be a set of n voters and C =
{c1, . . . , cm} be a set of m candidates. For every voter vi,
denote by Ai ⊆ C the set of candidates that are approved by
vi. A preference profile A = {A1, . . . , An} is the set of all
voter preferences Ai.

A variable number of winners (VNW) voting rule f takes
as input a preference profile A and outputs some set of can-
didates f(A) ⊆ C. Note that we allow f(A) = ∅ or
f(A) = C. We will also consider randomized VNW vot-
ing rules that output a distribution over sets of candidates.

Throughout this paper, we will denote by W the set of
candidates included in the committee, and we will denote by
C \W the set of candidates excluded from the committee.

We say that a group of voters V ⊆ N is `-large if |V | ≥
` · n

m , and `-cohesive if | ∩i∈V Ai|+ | ∩i∈V C \Ai| ≥ `. We
will also say that a group of voters V agrees on a candidate cj
if cj ∈ Ai for all i ∈ V or cj 6∈ Ai for all i ∈ V . Otherwise,
we say that V disagrees on cj . Intuitively, a group of voters
is `-large and `-cohesive if they constitute an `/m fraction of
all voters who agree on ` out of m candidates.

In our work, we consider a different measure of represen-
tation than in the FNW setting. In the FNW setting, voters
derive utility from the number of their approved candidates
elected to the committee. However, this definition cannot be
easily adapted to the VNW setting because then a rule could
maximally satisfy all voters by including all candidates on
the committee. Therefore, we assume that voters derive util-
ity from agreeing with the placement of candidates either on
the committee or not on the committee. For instance, in an
election with two candidates, c1 and c2, if a voter i has ap-
proval set Ai = {c1} (i.e., she approves c1 and disapproves
c2), then she receives one unit of utility for the output com-
mittee {c1, c2} because she agrees with the inclusion of c1
but disagrees with the inclusion of c2.

With this in mind, the following definition of average sat-
isfaction is adapted from the definition of Sánchez-Fernández
et al. [2017] in the FNW setting.

Definition 1. Given a set of candidates W ⊆ C, the average
satisfaction of a group of voters V ⊆ N is

avsW (V ) =
1

|V |
∑
i∈V

(|Ai ∩W |+ |(C \Ai) ∩ (C \W )|).

We can now define AS in the VNW setting.1 The intu-
ition behind the following definition is that any sufficiently
large and cohesive group of voters deserves to be adequately
represented on average, which is a departure from justified
representation-based axioms that have been studied in the
FNW setting. Intuitively, JR-like notions of proportionality
only require that some member of each cohesive group is rep-
resented to some extent, whereas average satisfaction requires
all members of each cohesive group to be represented (at least
on average).

Definition 2. A set of candidates W ⊆ C satisfies α-AS
if, for all `-large and `-cohesive groups of voters V ⊆ N ,
avsW (V ) ≥ α · ` for all ` ∈ [m]. For brevity, we refer to the
special case of 1-AS as AS.

The following example demonstrates cohesiveness and av-
erage satisfaction.

1Note that we overload the use of the term “average satisfaction”
to refer to both the numerical quantity from Definition 1 (average
satisfaction) as well as the axiomatic property in Definition 2 (AS).



Example 1. Consider the following profile with n = 8 vot-
ers, v1, . . . , v8, and m = 4 candidates, c1, . . . , c4, with pref-
erences

A1 = A2 = {c1, c2, c3, c4} A6 = {c2, c3}
A3 = A4 = {c1, c2} A7 = {c3}

A5 = {c1, c3} A8 = {c4}.

Now, consider the output W = {c4}. Note that each voter
agrees with the output on the placement of at least one can-
didate, so for any 1-large and 1-cohesive group V(1) (i.e.,
a group of 1 · n

m = 2 voters who agrees on the placement
of 1 candidate), avsW (V(1)) ≥ 1. Furthermore, note that
there is only one 2-large and 2-cohesive group of voters:
v1, v2, v3, and v4 agree on the placement of c1 and c2, but
disagree on the placement of c3 and c4, so they constitute
a 2-large group of voters who agree on 2 candidates. Let
V(2) = {v1, v2, v3, v4}. Note that avsW (V(2)) = 1 because
each v ∈ V agrees with W on exactly one placement, but be-
cause this group of voters is 2-large and 2-cohesive, we see
that W only satisfies 1/2-AS in this scenario.

Given our definition of voter satisfaction, we can straight-
forwardly extend the following deterministic multiwinner
rules from the FNW setting to the VNW setting.
Proportional Approval Voting (PAV): Under the PAV
rule [Thiele, 1895], voter i derives utility Hk = 1 + 1/2 +
· · ·+ 1/k from a committee W , where k = |Ai ∩W |+ |(C \
Ai) ∩ (C \W )| is the number of candidate placements that
i agrees with. The goal of PAV is to maximize the sum of
all voters’ utilities, and thus PAV outputs the subset W ⊆ C
with highest PAV-score.
Sequential Phragmén (seq-Phragmén): The seq-
Phragmén rule [Phragmén, 1899; Janson, 2016;
Brill et al., 2017] is defined as follows. Each candidate
carries a load of one unit, and this load is distributed among
voters who agree with the placement of this candidate in
either the included set or excluded set. The seq-Phragmén
rule proceeds iteratively by, in each round, placing the
candidate that results in the smallest increase in the maximal
load of any voter.

Let x(t)i denote the load of voter i, and s(t) the maximal
load, after t candidates have been placed. All voters start
out with no load, x(0)i = 0. Furthermore, let Nj = {i ∈
N : cj ∈ Ai} represent the set of voters that approve of
candidate cj . The maximal voter load if, on the tth placement,
candidate cj is included in the committee is

s(t)(cj) =
1 +

∑
i∈Nj

x
(t−1)
i

|Nj |
,

and the maximal voter load if candidate cj is excluded from
the committee is

s(t)(cj) =
1 +

∑
i∈N\Nj

x
(t−1)
i

|N \Nj |

because the load is distributed so as to equalize the loads
of all voters who agree with the placement of cj . At each

step t, seq-Phragmén places the candidate cj that minimizes
min(s(t)(cj), s

(t)(cj)) and updates voter loads accordingly:
in the case that cj is included in the committee,

x
(t)
i =

{
s(t)(cj) if i ∈ Nj

x
(t−1)
i otherwise,

and in the case that cj is excluded from the committee,

x
(t)
i =

{
s(t)(cj) if i ∈ N \Nj

x
(t−1)
i otherwise.

This rule proceeds until all candidates have been placed,
and then returns the included and excluded candidates.
Rule X: Rule X [Peters and Skowron, 2019] allocates each
voter a budget of one dollar, which they then spend on placing
candidates either in the included set or excluded set. Placing
a candidate costs n/m dollars, and the set of voters who agree
on the placement of this candidate must be able to collectively
afford the placement. The rule starts with an empty included
set W and an empty excluded set W , and it iteratively places
candidates in the committee or its complement as follows.

Let bi(t) be the amount of money that voter i has remaining
after the tth candidate is placed; i.e., bi(0) = 1 for all voters
vi ∈ N . At the tth step, we say that a candidate c 6∈ W ∪W
is q-affordable for some q ≥ 0 if

max

 ∑
i:c∈Ai

min(q, bi(t− 1)),
∑

i:c∈C\Ai

min(q, bi(t− 1))

 ≥ n/m.

In other words, candidate c is q-affordable if it can be placed
in either the included or excluded set while voters who ap-
prove or disapprove of c each pay a maximum of q dol-
lars. If no candidate is q-affordable for any q ≥ 0, then the
rule stops, placing the current set of included candidates into
W , the current set of excluded candidates into C \ W , and
placing arbitrarily any candidates not already put into W or
into C \W . Else, the rule places the candidate which is q-
affordable for the minimum value q in the approved or dis-
approved committee, according to voter preferences. Each
voter who agrees with this placement has their budget up-
dated to bi(t) = bi(t−1)−min(q, bi(t−1)), and the process
continues.

3 Justified Representation in VNW Elections
In order to build intuition about why we focus on AS instead
of (E/P)JR, we begin by defining JR, PJR, and EJR for VNW
elections. In each case, the definition is a straightforward
adaptation of the corresponding definition for the FNW set-
ting, where we intuitively replace “agreement with members
on the committee” with “agreement on the placement of each
candidate.” We slightly overload notation—namely, JR, PJR,
and E JR—from the FNW setting in the following definitions.
Definition 3 (JR). Consider a ballot profile A. A set of can-
didates W ⊆ C satisfies justified representation (JR) with
respect to A if, for all sets of 1-large and 1-cohesive voters
N∗, there exists an i ∈ N∗ such that |Ai ∩W |+ |(C \Ai)∩
(C \W )| ≥ 1.



Definition 4 (PJR). Consider a ballot profile A. A set of
candidatesW ⊆ C satisfies proportional justified representa-
tion (PJR) with respect to A if, for all `-large and `-cohesive
groups of votersN∗, |

⋃
i∈N∗ Ai∩W |+ |(

⋃
i∈N∗(C \Ai))∩

(C \W )| ≥ ` for all ` ∈ [m].

Definition 5 (EJR). Consider a ballot profile A. A set of
candidates W ⊆ C satisfies extended justified representa-
tion (EJR) with respect to A if, for all `-large and `-cohesive
groups of voters N∗, there exists an i ∈ N∗ such that
|Ai ∩W |+ |(C \Ai) ∩ (C \W )| ≥ ` for all ` ∈ [m].

The following example illustrates these definitions.

Example 2. Consider the same profile as in Example 1 with
n = 8 voters, v1, . . . , v8, and m = 4 candidates, c1, . . . , c4.

Again, consider the output W = {c4}. W satisfies JR
because each voter agrees with the output on the placement
of at least one candidate. Furthermore, W satisfies PJR be-
cause, on the only 2-large and 2-cohesive group of voters,
{v1, v2, v3, v4}, two of them agree with the placement of c3
and two of them agree with the placement of c4. However, W
does not satisfy EJR because no voter in the coalition agrees
with two placements of W—they all agree with exactly one
placement.

We also study the relationship between the extensions of
PAV, seq-Phragmén, and Rule X, and different notions of jus-
tified representation in the VNW setting.

Proposition 1. PAV satisfies PJR.

Proof. Assume that there exists an `-large, `-cohesive coali-
tion, G, that agrees on `′ ≥ ` candidates CG, but |

⋃
i∈GAi ∩

W |+ |(
⋃

i∈G(C \ Ai)) ∩ (C \W )| = k < `. We will show
that it is always possible to find a new outputW ′ with a higher
PAV score than W .

Let W agree with G on the placement of β < ` of the
candidates in CG. Note that β + (m − `′) = k because ev-
ery candidate that G disagrees on must be contained in either⋃

i∈GAi ∩W or (
⋃

i∈G(C \ Ai)) ∩ (C \W ). We therefore
have β + (m− `′) < ` and therefore `+ `′ > β +m.

In order to argue that there exists a W ′ with higher PAV
score than W , we examine what happens if we change the
placement of (a random) one of the `′ − β candidates that
G agrees upon, but W does not agree with G on. We will
show that, in expectation, changing the placement of one of
these candidates increases the PAV score. We let ∆PAV (G)
denote the expected total change in PAV score for voters in G
and ∆PAV (N \ G) denote the expected total change in PAV
score for voters in N \ G, and analyze these two quantities
separately.

For each voter in G, her PAV score increases by at least
1/(k + 1) ≥ 1/` on each of the `′ − β possible changes
because each member is at most k-satisfied. Furthermore,
there are at least `n/m voters in G. Therefore,

∆PAV (G) ≥ `n

m
· 1

`
.

For each voter vi in N \G, let vi agree with the placement
of xi candidates among the `′ − β candidates that may incur
a change, and yi of the remaining candidates, for a total of

xi + yi agreements with W . Initially, the PAV score of vi is
Hxi+yi . However, the expected PAV score of each vi inN \G
over all `′ − β possible changes is

xiHxi+yi−1 + ((`′ − β)− xi)Hxi+yi+1

`′ − β
,

so the average change in PAV score for each vi not in G is

xiHxi+yi−1 + ((`′ − β)− xi)Hxi+yi+1

`′ − β
−Hxi+yi

=
1

`′ − β
((`′ − β)Hxi+yi−1

+(`′ − β − xi)
(

1

xi + yi
+

1

xi + yi + 1

))
− `′ − β
`′ − β

Hxi+yi

=
1

`′ − β

(
−xi
xi + yi

+
`′ − β − xi
xi + yi + 1

)
>

1

`′ − β
· −xi
xi + yi

>
−1

`′ − β
.

Because there are at most n−`n/m voters inN \G, we have

∆PAV (N \G) ≥
(
n− `n

m

)(
− 1

`′ − β

)
.

Therefore, the expected total change in PAV score over all
`′ − β potential changes is

∆PAV (G) + ∆PAV (N \G)

≥ `n

m
· 1

`
+

(
n− `n

m

)(
− 1

`′ − β

)
=

n

m
− nm− `n
m(`′ − β)

=
n`′ − nβ
m(`′ − β)

− nm− `n
m(`′ − β)

=
n(`+ `′ − β −m)

m(`′ − β)

> 0,

where the last step follows because ` + `′ > β + m and
`′ > β. Therefore, we have shown the existence of W ′ with
higher PAV score, which is a contradiction.

Proposition 2. Seq-Phragmén satisfies PJR.

Proof. Denote by C(t) the set of candidates placed after t
rounds of the seq-Phragmén algorithm, and W (t) ⊆ C(t)

the set of candidates included in the committee in the first
t rounds. Consider any `-large, `-cohesive group G. We will
show that |

⋃
i∈GAi ∩W (m−k)|+ |(

⋃
i∈G(C(m−k) \Ai))∩

(C(m−k) \W (m−k))| ≥ `− k for all 0 ≤ k ≤ m. In particu-
lar, for k = 0 this implies that seq-Phragmén satisfies PJR.



We proceed by induction. As our base case, for k ≥ `, it is
vacuously true that |

⋃
i∈GAi∩W (m−k)|+|(

⋃
i∈G(C(m−k)\

Ai)) ∩ (C(m−k) \W (m−k))| ≥ `− k ≥ 0.
For the induction step, assume that |

⋃
i∈GAi ∩

W (m−k−1)| + |(
⋃

i∈G(C(m−k−1) \ Ai)) ∩ (C(m−k−1) \
W (m−k−1))| ≥ ` − k − 1, for some k < `. Call the can-
didate that is placed on the (m − k)th step c. If G disagrees
on c, then no matter how c is placed, |

⋃
i∈GAi∩W (m−k)|+

|(
⋃

i∈G(C(m−k) \Ai))∩ (C(m−k) \W (m−k))| ≥ `− k, We
now consider the case where G agrees on c. WLOG, assume
that every member in G approves c.

If |
⋃

i∈GAi ∩W (m−k−1)|+ |(
⋃

i∈G(C(m−k−1) \Ai)) ∩
(C(m−k−1) \W (m−k−1))| ≥ ` − k, then G derives the nec-
essary level of satisfaction regardless of the algorithm’s ac-
tion at round m − k. Suppose therefore that |

⋃
i∈GAi ∩

W (m−k−1)| + |(
⋃

i∈G(C(m−k−1) \ Ai)) ∩ (C(m−k−1) \
W (m−k−1))| = `−k−1, which implies that the total load on
G is at most `−k−1. That is,

∑
i∈G x

(m−k−1)
i ≤ `−k−1.

This means that N \ G, which is of size at most n − `n/m
voters, has total load at least (m−k−1)−(`−k−1) = m−`.
That is,

∑
i∈N\G x

(m−k−1)
i ≥ m− `. Therefore, there exists

a voter in N \G with load x(m−k−1)i ≥ m−`
n−`n/m = m

n . Sup-
pose that at round m − k, a candidate from CG is excluded
from the committee (it is easy to see that all other choices re-
sult in the necessary level of satisfaction for G). This implies
in particular that the average load among voters inN \G after
m− k rounds is strictly greater than m/n. We show that this
yields a contradiction.

Return to the first round t at which any voter’s load ex-
ceeded m/n. That is, s(t)(c(t)) > m/n, where c(t) denotes
the candidate placed at round t. Now, replace the algorithm’s
action at round t by including c instead. We can upper bound
s(t)(c) by imagining that the entire load from candidate c is
incurred by members of G. After including c, the total load
on G is

∑
i∈G x

(t)
i ≤ ` − k, and therefore the average voter

load among members of G at this point in time is at most

`− k
`n/m

≤ `

`n/m
=
m

n
.

Therefore, s(t)(c) ≤ n
m < s(t)(c(t)), a contradiction.

Proposition 3. Rule X satisfies PJR but not EJR.

Proof. We first prove that Rule X satisfies PJR, and then we
show that Rule X does not satisfy EJR.

Rule X satisfies PJR: Denote by C(t) the set of candidates
placed after t rounds of Rule X, and W (t) ⊆ C(t) the set
of candidates included in the committee in the first t rounds.
Consider any `-large and `-cohesive group G of size `n/m.
Let G agree on `′ ≥ ` candidates CG. WLOG, let G approve
all candidates in CG. We show that if |

⋃
i∈GAi ∩W (t)| +

|(
⋃

i∈G(C(t) \ Ai)) ∩ (C(t) \W (t))| < ` then there exists a
( 1
` )-affordable candidate.
We distinguish two cases: either there still exists an un-

placed candidate in CG, or all of CG has been placed.

In the first case, we note that no voter vi ∈ G has spent
more than 1

` on any single candidate over the first t rounds.
If they had, then we can return to the first such round, r, and
note that an unplaced candidate c ∈ CG can be included at
a cost at most 1

` to each voter who approves c. The cost is
at most 1

` because there are at least `n/m voters in G who
have each paid at most 1

` in each of (at most) ` − 1 earlier
rounds. Therefore, returning to round t + 1, we know that
each voter in G agrees with at most ` − 1 of the placements
over the first t rounds, and paid at most 1

` for each of these
placements, so each of them has at least 1

` of their budget
remaining. Therefore, an unplaced candidate from CG can
be included for a cost of at most q = 1

` to every voter who
agrees with it.

In the second case, we examine how many candidates in
CG are excluded from W (t). All of G approves all of CG,
so the entire cost of excluding any candidate in CG is borne
by N \ G, which consists of at most n − `n

m voters. Since
each candidate costs n/m to place, these voters can afford to
exclude at most (n− ` n

m )/( n
m ) = m− ` of them. Therefore,

`′ − (m − `) of the candidates in CG must be included in
W . This is enough to guarantee PJR, since all of the m − `′
candidates inC\CG will be contained in either

⋃
i∈GAi∩W

or (
⋃

i∈G(C \ Ai)) ∩ (C \ W ) regardless of their eventual
placement.

Rule X does not satisfy EJR: Consider the following profile
with n = 12 and m = 6 with the following preferences.

A1 = . . . = A4 = {c1, c2, c5}
A5 = . . . = A8 = {c1, c2, c6}

A9 = A10 = {c3, c4, c5}
A11 = A12 = {c3, c4, c6}.

The first four actions of Rule X will be to include c1 and
c2 and exclude c3 and c4. After these placements, voters
v1, . . . , v8 will have no money left, and voters v9, . . . , v12
will have their entire budgets left. Now, Rule X will per-
fectly spend the money of v9, . . . , v12 over candidates c5 and
c6 (either including both or neither) and the coalition of vot-
ers v9, . . . , v12 will not satisfy EJR because each voter in this
coalition is represented exactly once, even though someone
in this coalition deserves to be represented twice.

Notably, in the VNW setting, JR and PJR are less com-
pelling notions of representation than in the FNW setting. In
particular, whenever an `-cohesive group of voters does not
agree on the placement of a particular candidate, PJR auto-
matically counts that candidate toward the group’s represen-
tation quota, since at least one member of the group agrees
with the candidate’s placement. In other words, any disagree-
ment within an `-cohesive group results in partial represen-
tation, no matter the outcome of the election. This is partic-
ularly problematic for JR: any 1-large, 1-cohesive group of
voters that disagrees on even a single candidate will never be
witness to a violation of JR.

Proposition 3 is also notable because Rule X satisfies EJR
for FNW elections, but the straightforward extension of this



rule does not satisfy EJR for VNW elections, demonstrating
a qualitative difference between proportionality properties in
the FNW and VNW settings. It is still an open question
whether or not PAV and seq-Phragmén satisfy EJR for VNW
elections.

4 Deterministic Rules
We begin by showing an upper bound on the level of average
satisfaction that deterministic rules can provide.
Theorem 1. No deterministic rule satisfies (m−1

m + ε)-AS for
any m and any ε > 0.

Proof. First, suppose that m is odd. Then set n = 2, with
A1 = {c1, . . . , cm} and A2 = ∅. Without loss of general-
ity, suppose that the output W is such that |W | > m

2 . But
then voter v2 is an m

2 -large, m
2 -cohesive group with average

satisfaction at most m−1
2 , which yields an (m−1

m )-AS approx-
imation.

Next, suppose m is even, and set n = 4m. Consider the
profile

A1 = {c1, . . . , cm} A3 = {cm}
A2 = {c1, . . . , cm−1} A4 = ∅

Again, without loss of generality, suppose that the output
W is such that |W | ≥ m

2 . We consider two cases. In the first
case, suppose that the output W has |W | ≥ m

2 + 1. Consider
the m

2 -large, m
2 -cohesive group of voters V = {v3, v4}. We

have

avsW (V ) ≤ 1

2
(m− |W |+m− |W |+ 1) ≤ m− 1

2

which yields at most an (m−1
m )-AS approximation.

In the second case, suppose that the output W has |W | =
m
2 . Suppose that cm 6∈ W (the case of cm ∈ W follows

symmetrically). Then again consider V = {v3, v4}. We have

avsW (V ) ≤ 1

2

(m
2
− 1 +

m

2

)
=
m− 1

2

again yielding an (m−1
m )-AS approximation. This completes

the proof.

Theorem 1 leaves open the possibility that there exists a de-
terministic rule that provides quite good average satisfaction
guarantees when the number of candidates is large. Finding
such a rule or lowering the upper bound is an interesting open
question. However, we show that none of the natural adap-
tations of FNW rules that we consider is able to guarantee
better than a 0.5 approximation to AS even when m is large.
Theorem 2. PAV does not satisfy (0.5 + ε)-AS, for any ε > 0
for m ≥ 2.

Proof. Consider a profile with n = 2m voters with prefer-
ences

A1 = . . . = Am−1 = {c1, . . . , cm}
Am = . . . = A2m−2 = {c1, . . . , cm−1}

A2m−1 = {cm}
A2m = ∅.

This profile is symmetric in cm, so without loss of generality
suppose that cm is included. Suppose that some k − 1 <
m − 1 of the candidates c1, . . . , cm−1 are included. Then,
the change in PAV score that would result from including an
additional candidate is

m− 1

k + 1
+
m− 1

k
− 1

m− k
− 1

m− k + 1

≥ m− 1

m
+ 1− 1− 1

2
≥ 0,

where the first inequality holds because k < m.
Therefore, the maximum PAV score is achieved when all

candidates c1, . . . , cm−1 are included. But then the group
N∗ = {v2m−1, v2m} is 1-large and 1-cohesive but is only
satisfied 0.5 times on average.

Theorem 3. seq-Phragmén does not satisfy (0.5 + ε)-AS, for
any ε > 0 for m ≥ 2.

Proof. Consider the same profile as in the proof of Theo-
rem 2. It is easy to check that seq-Phragmén begins by in-
cluding candidates c1, . . . , cm−2, after which each voter of
the first and second type has load m−2

2(m−1) . In the (m − 1)-th
round, the algorithm has four choices: to include or exclude
cm−1, or to include or exclude cm.

Including cm−1 results in a load of m−1
2(m−1) = 1

2 on voters
v1, . . . , v2m−2. Excluding cm−1 results in a load of 1

2 to vot-
ers v2m−1 and v2m. Including cm (which is symmetric to ex-
cluding cm) results in a load x to voters v1, . . . , vm−1, v2m−1,
where x is the solution to mx− (m− 1) m−2

2(m−1) = 1, which
yields a solution of x = 1

2 .
The algorithm is therefore indifferent between all possi-

ble actions; breaking ties adversarially yields the inclusion of
cm−1. Regardless of the inclusion or exclusion of candidate
cm, the group N∗ = {v2m−1, v2m} is 1-large and 1-cohesive
but is only satisfied 0.5 times on average.

We note that the dependence on tiebreaking in the proof
of Theorem 3 can be removed by taking multiple copies of
the profile used in the proof and changing the preference of a
single voter.

Theorem 4. Rule X does not satisfy (0.5 + ε)-AS, for any
ε > 0 for m ≥ 3.2

Proof. Consider the same profile used in the proof of The-
orem 2. Rule X begins by including each of candidates
c1, . . . , cm−1. Each of these candidates costs n

m(2m−2) =
1

m−1 for each voter v1, . . . , v2m−2. In comparison, placing

the last candidate at any point costs n/2 voters n/m
n/2 = 2

m ,
which is a greater cost than 1

m−1 when m ≥ 3. Including
each of c1, . . . , cm−1 therefore costs v1, . . . , v2m−2 one dol-
lar each. Regardless of the placement of cm, the 1-large and
1-cohesive group of voters N∗ = {v2m−1, v2m} is satisfied
only 0.5 times on average.

2When m = 2, we know from Theorem 1 that no deterministic
rule, including Rule X, can achieve better than a 0.5 approximation.



5 Randomized Rules
We now turn our attention to randomized rules in order to
achieve better average satisfaction guarantees. A random-
ized rule is one that outputs a distribution over committees
rather than a single committee, and our approximation guar-
antee will hold in expectation over the possible committees.3
We consider a simple and natural randomized rule that, for
each candidate cj , includes cj in the set of winners W with
probability equal to the fraction4 of the voters who approve
cj .

Definition 6. Given a preference profile A, the Proportional
Random Rule (PRR) independently includes each cj ∈ C in
the winning committee W with probability

pj =
|{vi ∈ N s.t. cj ∈ Ai}|

n
.

Theorem 5. PRR satisfies 29/32-AS in expectation for any
m.

In the proof of Theorem 5, it will be helpful to think about
the effect that an individual candidate has on the satisfaction
of a group G. For an outcome W , a group of voters G, and
a candidate cj , we say that the contribution from cj to the
average satisfaction of G is avscj (G) = |{i : cj ∈ Ai}|/|G|
if cj ∈ W or avscj (G) = |{i : cj 6∈ Ai}|/|G| if cj 6∈ W .
Note that avsW (G) =

∑m
j=1 avscj (G).

Proof. We prove the result in two steps. First, we show that
when ` ≤ m/3, PRR achieves an average satisfaction of `;
second, we show that when ` > m/3, PRR achieves an aver-
age satisfaction of (29/32)`.

Case 1: ` ≤ m/3. Consider an `-cohesive group, G, of
size `n/m, and a candidate cj . Note that it is sufficient to
consider groups of size exactly `n/m because if there exists
an `-cohesive larger group that violates the desired guarantee,
there must exist a subset of size `n/m that also violates the
guarantee. Let kA = |{vi ∈ G : cj ∈ Ai}| denote the number
of voters in G who approve cj , and kD = `n/m− kA denote
the number of voters inG who disapprove cj . Without loss of
generality, let kA ≤ kD. Further, suppose that x of the voters
in N \G approve cj and y = n− `n/m− x voters in N \G
disapprove cj .

The expected contribution from cj to the average satisfac-
tion of G is

E[avscj (G)] =
kA
|G|

(
kA + x

n

)
+
kD
|G|

(
kD + y

n

)
.

Because kA ≤ kD and x+ y is fixed, this expression is mini-

3Recent work by Cheng et al. [2019] has applied randomization
to proportionality in the FNW setting as well.

4The marginal probabilities for each candidate being included in
the committee are the same under this rule as the random dictator-
ship rule. The distribution over committees induced by the two rules
is different, however.

mized when y = 0. We therefore have

E[avscj (G)] ≥ kA
|G|

(
kA + n− `n/m

n

)
+

kD
|G|

(
kD
n

)
=

1

n|G|
(
|G|2 + kA(n− `n/m− 2kD)

)
≥ |G|

n
=

`

m
,

where the inequality holds because kD ≤ `n/m by defini-
tion, and we can assume m ≥ 3 because ` must be at least 1.
Summed over all candidates, the average satisfaction of G is
at least `, as required.

Case 2: ` > m/3. Consider an `-cohesive group, G, of
size `n/m, and a candidate cj . Let kA = |{vi ∈ G : cj ∈
Ai}| denote the number of voters in G who approve cj , and
kD = `n/m− kA denote the number of voters in G who dis-
approve cj . Without loss of generality, let kA ≤ kD. As in
the previous case, it is easy to show that the expected contri-
bution from cj to G’s average satisfaction is minimized when
all voters in N \G approve cj .

We therefore have that

E[avscj (G)] =
kA
|G|

(
kA + n− `n/m

n

)
+
kD
|G|

(
kD
n

)
.

Substituting kD = `n/m − kA, taking the derivative with
respect to kA, and setting to 0 yields

1

n
(4kA − 3(`n/m) + n) = 0 =⇒ kA =

3`n/m− n
4

> 0,

where the inequality follows from the assumption that ` >
m/3. Furthermore, the second derivative with respect to kA
is 4/n > 0, and therefore kA = (3`n/m − n)/4 is a local
minimum.

The expected contribution from cj to G’s average satisfac-
tion can therefore be as low as

E[avscj (G)] =
kA
|G|

(
kA + n− `n/m

n

)
+
kD
|G|

(
kD
n

)
=
−`
8m

+
3

4
− m

8`
.

We also note that, because G is `-cohesive, there exist at
least ` candidates that G agrees on. Each of these candidates
has

avscj (G) ≥ |G|/n ≥ `/m,
where the first inequality follows from G being `-cohesive
and the second from G being `-large.

Summing over the contributions of all candidates, the av-
erage satisfaction of G is at least

`
`

m
+ (m− `)

(
3

4
− `

8m
− m

8`

)
=

(
9`

8m
− m2

8`2
− 7

8
+

7m

8`

)
`. (1)

Our goal is to lower bound the term in parentheses by 29
32 ,

thus providing the desired approximation guarantee. Setting



` = αm, where α ∈ ( 1
3 , 1), and differentiating with respect

to α yields

d

dα

(
9α

8
− 1

8α2
− 7

8
+

7

8α

)
=

9

8
+

2

8α3
− 7

8α2
.

Setting equal to 0 yields

9α3 − 7α+ 2 = (1 + α)(3α− 2)(3α− 1) = 0,

so the only critical point in the interval α ∈ (1/3, 1] is
α = 2/3. It is easy to check that the second derivative is
positive at α = 2/3, so average satisfaction is minimized at
this point. Plugging ` = 2m/3 into Equation 1 yields a 29/32
approximation to AS, as desired.

Guided by Theorem 5, we show that the bound is tight.
Theorem 6. PRR does not satisfy (29/32 + ε)-AS for any
ε > 0.

Proof. Let m = 3 and n = 12. Consider the profile

A1 = A2 = A3 = A4 = A5 = {c1, c2, c3}
A6 = A7 = A8 = {c1, c2}

A9 = A10 = A11 = A12 = ∅.

In particular, note that the first 8 voters form a 2-large and
2-cohesive group. Then the expected satisfaction of the first
five voters is 2

3 + 2
3 + 5

12 = 21
12 and the expected satisfaction of

the next three voters is 2
3 + 2

3 + 7
12 = 23

12 . Taking the average
yields 1

8 (5 21
12 + 3 23

12 ) = 29
16 = 29

32` for ` = 2.

Whether there exists a randomized rule that achieves better
than a 29/32-AS approximation remains an open problem.

Before concluding this section, we note a final interest-
ing and desirable property of PRR: strategyproofness. Since
decisions are made on each candidate independently, voters
maximize their expected satisfaction by reporting their true
approval preferences.

6 Conclusion
We have initiated the study of representation in approval elec-
tions with a variable number of winners. We believe that this
topic, and the study of VNW elections more generally, de-
serves further research.

Many open problems remain. In particular, we do not have
matching upper and lower bounds for the average satisfaction
guarantees that can be provided by deterministic and random-
ized rules. Determining the existence of rules that satisfy EJR
is also an interesting question; while we have argued that nat-
ural extensions of JR and PJR make less sense for VNW elec-
tions than for FNW, EJR remains a compelling property.

More broadly, we have assumed that voters gain utility
whenever they agree with the placement of a candidate, ei-
ther included or excluded. This is a natural model when the
notions of inclusion and exclusion are symmetric, as in the
ballot measure example. In other settings it makes sense to
consider other utility models. For instance, a natural exten-
sion of our model would consider voters who derive differ-
ent levels of utility for an approved candidate being selected
and a disapproved candidate being excluded, or even negative

utility from an approved candidate not being selected or a dis-
approved candidate being included. The latter utility model
is reminiscent of rules such as net satisfaction approval vot-
ing (NSAV) [Kilgour and Marshall, 2012], and precision and
recall metrics in information retrieval. Extending our results
to this setting appears nontrivial.
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[Fishburn and Pekeč, 2004] Peter C Fishburn and Aleksan-
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